Объяснение:
1)И з условия мы видим, что a_{1}=-30,тогда разность будет равна
d=-28-(-30)=2
Теперь по формуле
a_{n}=a_{1}+d(n-1)
a_{28}=-30+2*27=24
2)Сумма=2*(1-4^5)/1-4=2*(-1023)/(-3)=682
b1=2
q=4 ( b2:b1=8:2=4)
n=5( количество членов прогрессии)
3)b_n=3*2
b_n=6
и тогда очевидно 384 не является членом последовательности
если же имелась в виду геометрическая прогрессия
b_n=3*2^n
3*2^n=384
2^n=384:3
2^n=128
2^n=2^7
n=7
тогда да является ее 7-ым членом
4)a_{2}+a_{4}=14\\ a_{7}-a_{3}=12\\ \\ 2a_{1}+4d=14\\ a_{1}+6d-a_{1}-2d=12\\ \\ a{1}+2d=7\\ 4d=12\\ d=3\\ a_{1}=1
ответ разность равна 3 , первый член равен 1
Объяснение:
1)И з условия мы видим, что a_{1}=-30,тогда разность будет равна
d=-28-(-30)=2
Теперь по формуле
a_{n}=a_{1}+d(n-1)
a_{28}=-30+2*27=24
2)Сумма=2*(1-4^5)/1-4=2*(-1023)/(-3)=682
b1=2
q=4 ( b2:b1=8:2=4)
n=5( количество членов прогрессии)
3)b_n=3*2
b_n=6
и тогда очевидно 384 не является членом последовательности
если же имелась в виду геометрическая прогрессия
b_n=3*2^n
3*2^n=384
2^n=384:3
2^n=128
2^n=2^7
n=7
тогда да является ее 7-ым членом
4)a_{2}+a_{4}=14\\ a_{7}-a_{3}=12\\ \\ 2a_{1}+4d=14\\ a_{1}+6d-a_{1}-2d=12\\ \\ a{1}+2d=7\\ 4d=12\\ d=3\\ a_{1}=1
ответ разность равна 3 , первый член равен 1
{ 3(a +d) = 12 ; a² + (a+d)² + (a+2d)² =80. {a+d =4;a² + (a+d)² + (a+d +d)² =80
{d = 4 - a ; a² + 4² +(4+(4 -a))² =80.
a² +(8 - a)² +16 =80;
a² - 8a = 0;
a(a-8) =0;
a₁=0 ⇒d₁ =4 .
a₂=8 ⇒d₂ =-4 .
ответ : 0 ; 4 ; 8 или 8 ;4 ;0.
2) . Причем здесь предложения :
Пусть Sn - сумма n первых членов арифметической прогрессии (an)
{ a₃+a₅+a₈ =18; a₂+ a₄ = - 2.
{ (a+2d) +(a+4d) +(a+7d) =18 ; (a+d) +(a+3d) = -2.
{3a+13d = 18 ; 2a +4d = - 2. {3a+13d = 18 ; 2(a +2d) = - 2.
{3a+13d = 18 ; a = - 1 - 2d .
3( -1 -2d) +13d = 18 ;
7d =21;
d = 3 . .
a = -1 -2d = -1 -2*3 = -7 .
ответ : - 7 ; 3.
-7; -4 ; -1 ; 2 ; 5 ; 8;11 ;14