Пусть основание = a см, а боковая сторона = b см. Т.к. нам известен периметр, то можем составить одно уравнение - 2a + 2b = 46. Потом нам известно, что боковая сторона больше основание на 3, т.е. b = a + 3
В итоге получается система уравнений, решив ее получим длины a и b:
Подставляем в первое уравнение значение b из второго уравнения:
130см
Объяснение:
Пусть основание = a см, а боковая сторона = b см. Т.к. нам известен периметр, то можем составить одно уравнение - 2a + 2b = 46. Потом нам известно, что боковая сторона больше основание на 3, т.е. b = a + 3
В итоге получается система уравнений, решив ее получим длины a и b:
Подставляем в первое уравнение значение b из второго уравнения:
2a + 2(a + 3) = 46
2a + 2a + 6 = 46
4a = 40
a = 10 см
Подставляем значение а во второе уравнение:
b = 10 + 3 = 13 см
Теперь, зная длины сторон, на изи узнать площадь:
a * b = 10 * 13 = 130см
5/ (1/4)⁻¹ * (-8/9)⁰* (1/3)² / 4 = 4/4 * 1 * 1/9 = 1/9
3/ (a+b)* ( x²+x+1)
Объяснение:
2) P = a+b+с = 3x²y + 8x-9y + 4x²y+3x²y+4x = 10x²y+12x-9y
10x²y¹ ⇒ 2+1 = 3 степень
4) V = 1400 м³ = 1,4*10³ м³
n = 2.7*10⁷ м⁻³
N = nV = 2.7*10⁷ м⁻³ * 1,4*10³ м³ ≈3.8*10¹⁰
6) P = 4a
S = a²
S₁/S₂ = 25
S₁/S₂ = (a₁/a₂)² = 25
a₂ = a₁/5
P₁/P₂ = 4a₁/4a₂ = a₁/a₂ = 5
P₂ = P₁/5
уменьшится в 5 раз
1-го нет. 3 и 5 не понятно что там в условии за знаки
по 5 мне кажется там так:
(1/4)⁻¹ * (-8/9)⁰* (1/3)² / 4 = 4/4 * 1 * 1/9 = 1/9
3-й я думаю там так ax² + bx² + bx + ax + a +b =x²(a+b) + x(a+b) + (a+b) = (a+b)* ( x²+x+1)