Поскольку модуль слева это модуль от суммы положительного числа 3 и модуля, то большой модуль положителен и раскрывается как уравнение вида abs(x+2)+3=4 и решается как abs(x+2)=1 и x+2=1 или x-2=-1. а если бы у тебя было бы уравнение abs(abs(x+2)-3)=4, то пришлось бы рассмотреть уравнения abs(x+2)=4 и abs(x+2)=-4 только когда у тебя по модулем находится сумма положительного числа и модуля от выражения, содержащего переменную x ты рассматриваешь уравнение в варианте (заменяешь скобки модуля на обычные скобки) поскольку при сложении положительного числа и модуля какого-либо выражения их сумма не может быть отрицательна.
Решала методом сложения. По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы, сложив исходные уравнения, получить такое уравнение, в котором останется только одно неизвестное. В первом задании, например, я домножила первое уравнение на -3, чтобы далее и в первом, и во втором уравнении системы было 6х и -6х. Это сделано для того, чтобы при сложении этих уравнений иксы полностью уничтожились, и можно было решить их относительно У. Ну а потом по старинке: найденный У подставляем в любое из уравнений системы и получаем уже Х.
По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы, сложив исходные уравнения, получить такое уравнение, в котором останется только одно неизвестное.
В первом задании, например, я домножила первое уравнение на -3, чтобы далее и в первом, и во втором уравнении системы было 6х и -6х. Это сделано для того, чтобы при сложении этих уравнений иксы полностью уничтожились, и можно было решить их относительно У. Ну а потом по старинке: найденный У подставляем в любое из уравнений системы и получаем уже Х.