Солнышки : * турист км за три дня. во второй день он на 10 км больше, чем в первый день, и на 5км меньше, чем в третий. сколько километров турист проходит каждый день?
Рационáльное числó (от лат. ratio «отношение, деление, дробь») — число, которое можно представить в виде обыкновенной дроби {\displaystyle {\frac {m}{n}}}{\frac {m}{n}}, где {\displaystyle m,n}m,n — целые числа, {\displaystyle n\neq 0}n\neq 0[1]. К примеру {\displaystyle {\frac {2}{3}}}{\frac {2}{3}}, где {\displaystyle m=2}{\displaystyle m=2}, а {\displaystyle n=3}n=3. Понятие дроби возникло несколько тысяч лет назад, когда, сталкиваясь с необходимостью измерять некоторые величины (длину, вес, площадь и т. п.), люди поняли, что не удаётся обойтись целыми числами и необходимо ввести понятие доли: половины, трети и т. п. Дробями и операциями над ними пользовались, например, шумеры, древние египтяне и греки.
Пусть первая бригада выполняет n заказов в час. Время выполнения одного заказа первой бригадой составит 1/n часов Скорость работы второй бригады - m заказов в час, и время выполнения одного заказа 1/m часов Время выполнения одного заказа на 3 часа меньше 1/n = 1/m + 3 При совместной работе скорость выполнения составит n+m заказов в час А время выполнения одного 1/(n+m) = 2 часа
решаем совместно эти уравнения n = 1/(1/m+3) = 1/(1/m + 3m/m) = m/(1+3m) n+m = 1/2 m/(1+3m) + m = 1/2 m + m(1+3m) = 1/2(1+3m) 3m^2 + 2m = 1/2 + 3/2m 6m^2 + m -1 = 0 m = -1/2 - отрицательный корень не годится m = 1/3 заказа в час - а вот это годится И это ответ :)
Рационáльное числó (от лат. ratio «отношение, деление, дробь») — число, которое можно представить в виде обыкновенной дроби {\displaystyle {\frac {m}{n}}}{\frac {m}{n}}, где {\displaystyle m,n}m,n — целые числа, {\displaystyle n\neq 0}n\neq 0[1]. К примеру {\displaystyle {\frac {2}{3}}}{\frac {2}{3}}, где {\displaystyle m=2}{\displaystyle m=2}, а {\displaystyle n=3}n=3. Понятие дроби возникло несколько тысяч лет назад, когда, сталкиваясь с необходимостью измерять некоторые величины (длину, вес, площадь и т. п.), люди поняли, что не удаётся обойтись целыми числами и необходимо ввести понятие доли: половины, трети и т. п. Дробями и операциями над ними пользовались, например, шумеры, древние египтяне и греки.
Скорость работы второй бригады - m заказов в час, и время выполнения одного заказа 1/m часов
Время выполнения одного заказа на 3 часа меньше
1/n = 1/m + 3
При совместной работе скорость выполнения составит n+m заказов в час
А время выполнения одного
1/(n+m) = 2 часа
решаем совместно эти уравнения
n = 1/(1/m+3) = 1/(1/m + 3m/m) = m/(1+3m)
n+m = 1/2
m/(1+3m) + m = 1/2
m + m(1+3m) = 1/2(1+3m)
3m^2 + 2m = 1/2 + 3/2m
6m^2 + m -1 = 0
m = -1/2 - отрицательный корень не годится
m = 1/3 заказа в час - а вот это годится
И это ответ :)