Соотнесите неравенства с их решениями a)x^2 + 4x - 5 > 0
b)x^2 + 6x + 9 < 0
c)4x^2 - x + 9 < 0
d)x^2 - x + 1/4 > 0
1)Неравенство не имеет решений.
2)Решением неравенства является вся числовая прямая.
3) Решением неравенства является одна точка.
4) Решением неравенства является закрытый промежуток.
5) Решением неравенства является открытый промежуток.
6) Решением неравенства является объединение двух промежутков.
v1 - скорость автобуса - ?
v2 - скорость грузовика
t1 - время автобуса
t2 - время грузовика
S=v1×t1=v2×t2
v1=v2+5
t1=t2- 8/60
20=v1×t1=(v2+5)(t2-8/60)
20=v2×t2 => t2=20/v2 => (подставляем в верхнее выражение)
20=(v2+5)(20/v2 - 2/15)=20+ 100/v2 -2v2/15 - 10/15 =>
100/v2 -2v2/15 - 10/15=0 - приводим к общему знаменателю:
- v2² -5v2+750=0
D=b²-4ac=25+3000=3025=55²
v2=(-b+√D) / 2a = (5+55) / (-2) = -30 (не является решением, т.к. v>0)
v2=(-b -√D) / 2a = (5-55) / (-2) = 25
v1=v2+5=30 (км/ч)
Рассмотрение математических задач, решавшихся в Древнем Египте и Вавилоне, показывает, что еще в глубокой древности возникли некоторые приемы приближенных вычислений. Под влиянием запросов техники в настоящее время разработаны разные методы приближенных вычислений.
Большие заслуги в развитии теории приближенных вычислений имеет академик Алексей Николаевич Крылов (1863 - 1945). Он в 1942 году писал: «Во всех справочниках, как русских, так и иностранных, рекомендуемые приемы численных вычислений могут служить образцом, как эти вычисления делать не надо… вычисление должно производиться с той степенью точности, которая необходима для практики, причем всякая неверная цифра составляет ошибку, а всякая лишняя цифра – половину ошибки».