Решение: Обозначим первое число за (х), а второе число за (у), тогда согласно условия задачи составим два уравнения: х² - у²=6 (х-2)² - (у-2)²=18 Решим эту систему уравнений: х²-у²=6 х²-4х+4-(у²-4у+4)=18 х²-у²=6 х²-4х+4-у²+4у-4=18 х²-у²=6 х²-4х-у²+4у=18 Вычтем из первого уравнения второе уравнение: х²-у²-х²+4х+у²-4у=6-18 4х-4у=-12 разделим каждый член уравнения на (4) х-у=-3 Найдём значение х х=у-3 Подставим это значение в первое уравнение: х²-у²=6 (у-3)² -у²=6 у²-6у+9-у²=6 -6у=6-9 -6у=-3 у=-3: -6 у=0,5 Подставим значение у=0,5 в х=у-3 х=0,5-3 х=-2,5 Сумма чисел (х) и (у) равна: -2,5 + 0,5=-2
если меняется только одна цифра, значит, меняется только один разряд числа: единицы, десятки, сотни и т.д.
• Изменяя только единицы, деление на 18 снова не получится. Потому что от одного числа, которое делится на 18, до другого должна быть разница хотя бы в эти самые 18.
• Изменяя десятки, мы делаем предположение, что какое-либо круглое двузначное число делится на 18, и это так:
90 : 18 = 5.
Таким образом, если найдётся число, у которого в разряде десятков стоит 0, и оно делится на 18, достаточно будет заменить 0 на 9, чтобы получить новое число, делящееся на 18.
Пример: 108 и 198.
Для числа 19 ответ: нет, нельзя.
Рассуждения аналогичные, только в десятках умножение 19 ни на какое число не даст круглого двузначного числа. То же самое и с сотнями, и с тысячами и т.п., ведь из девятки на конце может получиться нуль только умножением на 10, или кратное ему, а это нам не подходит, т.к. числа 190 и подобные ему будут изменять не один разряд числа, а несколько. Так что только одну цифру изменить никак не получится.
Обозначим первое число за (х), а второе число за (у), тогда
согласно условия задачи составим два уравнения:
х² - у²=6
(х-2)² - (у-2)²=18
Решим эту систему уравнений:
х²-у²=6
х²-4х+4-(у²-4у+4)=18
х²-у²=6
х²-4х+4-у²+4у-4=18
х²-у²=6
х²-4х-у²+4у=18
Вычтем из первого уравнения второе уравнение:
х²-у²-х²+4х+у²-4у=6-18
4х-4у=-12 разделим каждый член уравнения на (4)
х-у=-3
Найдём значение х
х=у-3 Подставим это значение в первое уравнение: х²-у²=6
(у-3)² -у²=6
у²-6у+9-у²=6
-6у=6-9
-6у=-3
у=-3: -6
у=0,5
Подставим значение у=0,5 в х=у-3
х=0,5-3
х=-2,5
Сумма чисел (х) и (у) равна:
-2,5 + 0,5=-2
ответ: Сумма искомых чисел равна -2
Для числа 18 ответ: да, можно.
Я рассуждал так:
если меняется только одна цифра, значит, меняется только один разряд числа: единицы, десятки, сотни и т.д.
• Изменяя только единицы, деление на 18 снова не получится. Потому что от одного числа, которое делится на 18, до другого должна быть разница хотя бы в эти самые 18.
• Изменяя десятки, мы делаем предположение, что какое-либо круглое двузначное число делится на 18, и это так:
90 : 18 = 5.
Таким образом, если найдётся число, у которого в разряде десятков стоит 0, и оно делится на 18, достаточно будет заменить 0 на 9, чтобы получить новое число, делящееся на 18.
Пример: 108 и 198.
Для числа 19 ответ: нет, нельзя.
Рассуждения аналогичные, только в десятках умножение 19 ни на какое число не даст круглого двузначного числа. То же самое и с сотнями, и с тысячами и т.п., ведь из девятки на конце может получиться нуль только умножением на 10, или кратное ему, а это нам не подходит, т.к. числа 190 и подобные ему будут изменять не один разряд числа, а несколько. Так что только одну цифру изменить никак не получится.