1. x – независимая переменная, y – зависимая переменная.
2. Область определения: очевидно, что для любого значения аргумента (x) можно вычислить значение функции (y). Соответственно, область определения данной функции – вся числовая прямая.
3. Область значений: y может быть любым. Соответственно, область значений – также вся числовая прямая.
4. Если x= 0, то и y= 0.
График функции y=x3y=x3
1. Составим таблицу значений:

2. Для положительных значений x график функции y=x3y=x3 очень похож на параболу, ветви которой более "прижаты" к оси OY.
3. Поскольку для отрицательных значений x функция y=x3y=x3 имеет противоположные значения, то график функции симметричен относительно начала координат.
Теперь отметим точки на координатной плоскости и построим график (см. рис. 1).

Эта кривая называется кубической параболой.
Примеры
I. На небольшом корабле полностью закончилась пресная вода. Необходимо привезти достаточное количество воды из города. Вода заказывается заранее и оплачивается за полный куб, даже если залить её чуть меньше. Сколько кубов надо заказать, что бы не переплачивать за лишний куб и полностью заполнить цистерну? Известно, что цистерна имеет одинаковые длину, ширину и высоту, которые равны 1,5 м. Решим эту задачу, не выполняя вычислений.
1. Построим график функции y=x3y=x3.
2. Найдем точку А, координата x, которой равна 1,5. Мы видим, что координата функции находится между значениями 3 и 4 (см. рис. 2). Значит надо заказать 4 куба.

II. Построить график функции y=x3+1y=x3+1.
1. Составим таблицу значений:

2. Построим точки. Мы видим, что эти точки симметричны относительно точки с координатами (0,1). В итоге получаем кубическую параболу, смещенную вверх по оси OY (см. рис. 3).
Для нахождения точек пересечения с осью Х x^4-4x^2=0 х1=0; х2=2; х3=-2; Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0 f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0 Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2) теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум -2^0.5 0 2^0.5 ---*---о*о*---о*-- -2 -1 1 2
x=0 => y= 0 x=-2^0.5 => y= -4 x=2^0.5 => y= -4
x=-2 => y= 0 x=-1 => y=-3 x=1 => y=-3 x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум. Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум. Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено Точки пересечения с осью Х х1=0; х2=2; х3=-2; Минимум (-2^0.5;-4) и (2^0.5;-4) Максимум (0;0)
Свойства функции y=x3y=x3
Давайте опишем свойства данной функции:
1. x – независимая переменная, y – зависимая переменная.
2. Область определения: очевидно, что для любого значения аргумента (x) можно вычислить значение функции (y). Соответственно, область определения данной функции – вся числовая прямая.
3. Область значений: y может быть любым. Соответственно, область значений – также вся числовая прямая.
4. Если x= 0, то и y= 0.
График функции y=x3y=x3
1. Составим таблицу значений:

2. Для положительных значений x график функции y=x3y=x3 очень похож на параболу, ветви которой более "прижаты" к оси OY.
3. Поскольку для отрицательных значений x функция y=x3y=x3 имеет противоположные значения, то график функции симметричен относительно начала координат.
Теперь отметим точки на координатной плоскости и построим график (см. рис. 1).

Эта кривая называется кубической параболой.
Примеры
I. На небольшом корабле полностью закончилась пресная вода. Необходимо привезти достаточное количество воды из города. Вода заказывается заранее и оплачивается за полный куб, даже если залить её чуть меньше. Сколько кубов надо заказать, что бы не переплачивать за лишний куб и полностью заполнить цистерну? Известно, что цистерна имеет одинаковые длину, ширину и высоту, которые равны 1,5 м. Решим эту задачу, не выполняя вычислений.
1. Построим график функции y=x3y=x3.
2. Найдем точку А, координата x, которой равна 1,5. Мы видим, что координата функции находится между значениями 3 и 4 (см. рис. 2). Значит надо заказать 4 куба.

II. Построить график функции y=x3+1y=x3+1.
1. Составим таблицу значений:

2. Построим точки. Мы видим, что эти точки симметричны относительно точки с координатами (0,1). В итоге получаем кубическую параболу, смещенную вверх по оси OY (см. рис. 3).

x^4-4x^2=0
х1=0; х2=2; х3=-2;
Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0
f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0
Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2)
теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум
-2^0.5 0 2^0.5
---*---о*о*---о*--
-2 -1 1 2
x=0 => y= 0
x=-2^0.5 => y= -4
x=2^0.5 => y= -4
x=-2 => y= 0
x=-1 => y=-3
x=1 => y=-3
x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум.
Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум.
Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено
Точки пересечения с осью Х
х1=0; х2=2; х3=-2;
Минимум
(-2^0.5;-4) и (2^0.5;-4)
Максимум
(0;0)