В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
SashaGuryewa
SashaGuryewa
02.03.2021 21:26 •  Алгебра

Сор по алгебре решите задание 2
1)63^2-126*43+43^2
2)57^2-3^2/24^2-36
задание 3 *куб*
a=x-4
s=6a^2
V=a^3
задание 4
докозать что 115^3-94^3
делится на 3​

Показать ответ
Ответ:
WolfHunter1
WolfHunter1
09.02.2020 09:18

500 различных результатов можно получить

Объяснение:

Покажем, что в любой расстановке скобок получаем чётные числа.

В зависимости расстановки скобок каждая 1 прибавляет к результату +1 или –1. То есть, если при некоторой расстановке скобок прибавляется +1 в количестве х, тогда прибавляется –1 в количестве (500–х). Отсюда, результат х–(500–х)=2•х–500 чётное число!

Покажем, что получаются чётные числа от –500 по 498, то есть всего:  

(498–(–500)):2+1 = 998:2+1 = 499+1 = 500 чисел.

1) (–1–1–1–1…) = –500 (так как количество 1 всего 500)

2) в конец добавим пару скобок

–1–1–1–1…–(1–1)=–498

3) перед последней парой скобок добавим пару скобок

–1–1–1–1…–(1–1)–(1–1)=–496

250) –1–1–(1–1)…–(1–1)–(1–1)=–2

Таким образом можем получить все чётные отрицательные числа от –500 по –2. Для следующей расстановки скобок результатом будет 0:

–(1–1)–(1–1)–(1–1)–…– (1–1)=0+0+…+0=0 (250 пар скобок).

Покажем, что можем получить все чётные положительные числа от 2 по 498. Для этого добавим в выражение для 0 после знака минус открывающийся скобку и её пару в конец выражения и следующим образом постепенно удаляем внутренние скобки:  

1) –((1–1)–(1–1)–…–(1–1)–1–1)=2

2) –((1–1)–(1–1)–…–(1–1)–1–1–1–1)=4

249) –(1–1–1–1–…–1–1–1–1–1–1)=498.

0,0(0 оценок)
Ответ:
DashaShitova2006
DashaShitova2006
15.02.2022 12:20

Упростим:

3^(8x) * ( 3^(2x^2-8x+7)  +3^(x^2-4x+3) -4)>=0

3^(8x) * ( 3 *(3^(x^2-4x+3) )^2  +3^(x^2-4x+3) -4)>=0

3^(8x)>0  при любом  x, а  значит  не влияет на решение неравенства.

    3^(x^2-4x+3)=t>0 (замена)

 3t^2+t-4>=0

 (t-1)*(t+4/3)>=0

  t∈(-беск ;-4/3] ∨[1;+беск)

 тк  t>0  ,то  отрицательная часть решения нам не нужна

  t∈x[1;+беск)

     1<=3^(x^2-4x+3)

      x^2-4x+3>=0

     (x-1)*(x-3)>=0

       x∈(-беск ;1] ∨[3;+беск)

ответ:  x∈(-беск ;1] ∨[3;+беск)

   

         

 

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота