Так как a, b, c - последовательные члены арифметической прогрессии, то b и с можно выразить через а и разность прогрессии d:
Характеристическое свойство арифметической прогрессии: каждый член арифметической прогрессии, начиная со второго, равен полусумме предыдущего и последующего члена. Значит, нужно доказать, что:
Выполняем преобразования:
Выражаем b и с через а и d:
Слева и справа записаны одинаковые выражения. Значит, заданные числа удовлетворяют характеристическому свойству и являются последовательными членами арифметической прогрессии
Характеристическое свойство арифметической прогрессии: каждый член арифметической прогрессии, начиная со второго, равен полусумме предыдущего и последующего члена.
Значит, нужно доказать, что:
Выполняем преобразования:
Выражаем b и с через а и d:
Слева и справа записаны одинаковые выражения. Значит, заданные числа удовлетворяют характеристическому свойству и являются последовательными членами арифметической прогрессии
x^2+6x+9<0,
(x+3)^2<0,
нет решений; (x+3)^2≥0, x∈R
-x^2+6x-5≥0,
a=-1<0 - ветви параболы направлены вниз, часть параболы над осью Ох (≥0) расположена между корнями,
-x^2+6x-5=0,
x^2-6x+5=0,
по теореме Виета х_1=1, x_2=5,
1≤x≤5,
x∈[1;5]
x^2-4x+3≥0,
a=1>0 - ветви параболы направлены вверх,
x^2-4x+3=0,
x_1=1, x_2=3 - часть параболы над осью Ох расположена вне корней,
x≤1, x≥3,
x∈(-∞;1]U[3;+∞)
x^2-6x+8≤0,
a=1>0 - ветви параболы - вверх,
x^2-6x+8=0,
x_1=2, x_2=4 - часть параболы под осью Ох (≤0) расположена между корнями,
2≤x≤4,
x∈[2;4]