Составь математическую модель данной ситуации:
«Теплоход проходит расстояние между двумя пристанями по течению реки за 3 ч., а против течения — за 4 ч. Собственная скорость теплохода — v км/ч, а скорость течения реки — x км/ч».
a) Определи скорость теплохода по течению реки и против течения реки.
b) Определи расстояние, которое теплоход проплыл по течению реки.
с) Определи расстояние, которое теплоход проплыл против течения реки.
d) Сравни расстояние, пройденное теплоходом по течению реки и против течения реки.
Результат сравнения запиши в виде математической модели.
ответ:
a) скорость теплохода по течению реки —
км/ч; против течения реки- км/ч
b) расстояние, которое теплоход проплыл по течению реки:
с) расстояние, которое теплоход проплыл против течения реки:
d) расстояние, пройденное теплоходом по течению реки, и расстояние, пройденное теплоходом против течения реки, будут (запиши прилагательное)
Пусть х - скорость водителя, тогда t=240/x - время, за которое он должен проехать 240 км, x - средняя скорость, т.к. х=S/v.
Фактически водитель ехал 1,5 часа со скоростью х км/ч и проехал путь 1,5х км. Время стоянки 18 мин = 18/60 часа = 0,3 часа.
Т.о. время на оставшийся путь равно t = 240/x -1,5 -0,3, который он ехал со скоростью (х+20) км/ч,
этот путь равен (х+20)(240/x -1,8).
Составим уравнение: 1,5х + (х+20)(240/x -1,8) = 240.
Решите и найдите х. Это и будет средняя скорость.
1,5х2 +(х+20)(240 - 1,8х) = 240х; -0,3х2 - 36х + 4800 = 0;
х2 + 120х - 16000 = 0;
D= 14400 + 64000 = 78400 = 2802 ; x=80.
ответ: 80.
Решение
Пусть скорость 2-ого велосипедиста х км/ч,
а скорость 1-ого велосипедиста (х+1) км/ч.
Тогда время, затраченное первым велосипедистом - 90/(х+1) ч,
а время, затраченное вторым велосипедистом - 90/х ч.
Составим уравнение:
90/(х+1)+1=90/х
(90х + х² + х — 90х + 90)/(х(х+1)) = 0
х² + х - 90 = 0
D = 1 + 4*90 = 361
x₁ = (- 1 + 1 9)/2 = 9
x₂ = (- 1 - 19)/2 = - 10 — не удовлетворяет условию задачи.
9 км/ ч - скорость 2-ого велосипедиста
1) 9 + 1 = 10 км/ч - скорость 1-ого велосипедиста
ответ: 10 км/ч; 9 км/ч.