Составь математическую модель по словесной.
Соседка разводит кур и кроликов.
Сколько у соседки кур и сколько кроликов, если у них вместе 65 голов и
190 лап(-ы)?
Выбери подходящую математическую модель, обозначив
число кур за a, а число кроликов за b:
{a⋅b=255a+b=65
{a+b=652a+4b=190
{(a+b)⋅2=190b:a=2
{a+b=6512ab=190
другой ответ
{a+b=65(a+b)⋅2=190
2)Аналитически
По-моему мнению, решая неравенства, самый рациональный через тригонометрический круг. Но мы разберем сразу 2 варианта.
№1. Тригонометрический круг
Как мы помним, на круге отсчитываем синус по игреку. Ищем значение 1/2, и проводим хорду так, чтобы она проходила через точку 1/2 (по игреку, напомню еще раз). То, что ниже этой хорды и будут решениями неравенства. Нетрудно сообразить, что sin30 градусов даст 1/2. Но и sin150 градусов даст 1/2. Таким образом, отсюда вытекает двойное неравенство:
150<sinx<30
P.S. Все, что я обвел желтым - это решение данного неравенства (рис. 1)
№2. Аналитический
Рассмотрим уравнение:
Решая уравнение, получим:
Чтобы неравенство было верным, нужно, чтобы угол альфа был меньше, или равен корням уравнения sinx=1/2.
Опять же, отсюда вытекает двойное неравенство:
150<sinx<30
1) 25X^2 - 75X^2 - 17X + 6 = 0
25*(5)^2 - 75*25 - 85 + 6 = 625 - 1875 - 85 + 6 = 631 - 1960 = - 1329
ОТВЕТ: число 5 НЕ ЯВЛЯЕТСЯ КОРНЕМ ДАННОГО УРАВНЕНИЯ
2) 3*(2X-7) = 6X+1
6X - 21 = 6X + 1
6X - 6X = 22
0X = 22
ОТВЕТ: КОРНЕЙ НЕТ
4) (X-1)*(X+1) = 0
X1 = 1 X2 = - 1
(X+1)^2 = 2X+2
X^2 + 2X + 1 = 2X + 2
X^2 + 2X + 1 - 2X - 2 = 0
X^2 - 1 = 0
X^2 = 1 ---> X1 = V 1 = 1 (один корень)
ОТВЕТ: НЕ ЯВЛЯЕТСЯ
|X| - 1 = 0
|X| = 1
ОТВЕТ: ЯВЛЯЕТСЯ
X^2 = 1
ОТВЕТ: ЯВЛЯЕТСЯ
(X-1) = (X+1)
Корней нет : НЕ ЯВЛЯЕТСЯ
5) 2X+3A = 5X - 6B
5X - 2X = 3A + 6B
3X = 3*(A + 2B)
X = A + 2B
3) - 24X = - 5
AX = B
48X = 10
72X = 15