Составь равенство, соответствующее данному утверждению: «Чтобы найти число d, зная, что 25% от него равны числу c, надо умножить число c на 100 и разделить полученное произведение на 25».
A) 1/3x ≥ 2 | умножим обе части на 3x ≥ 6б) 2-7x> 0 | перенесем все свободные члены в правую часть, неизвестные оставим в левой-7x > -2 |разделим обе части на -2 , при делении на отрицательное число знак неравенства меняется на противоположныйx < 2/7в) раскроем скобки6y-9-3,4> 4y-2,4 | перенесем все свободные члены в правую часть, неизвестные оставим в левой y-4y> -2,4+9+3,4 -3y> 10 |разделим обе части на -3 , при делении на отрицательное число знак неравенства меняется на противоположный y < -10/3
Надо приравнять log2(х) = 5 - log2(x+14).
log2(х) + log2(x+14) = 5.
Сумма логарифмов равна логарифму произведения, а цифру 5 представим так: 5 = log2(32).
log2(х*(x+14)) = log2(32).
При равных основаниях логарифмирумые выражения равны.
х*(x+14) = 32. Раскроем скобки:
х² + 14х - 32 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=14^2-4*1*(-32)=196-4*(-32)=196-(-4*32)=196-(-128)=196+128=324;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√324-14)/(2*1)=(18-14)/2=4/2=2;
x_2=(-√324-14)/(2*1)=(-18-14)/2=-32/2=-16 - не принимаем по ОДЗ.
По значению абсциссы х = 2 находим ординату:
y=log2(2) = 1.