Составь словесную модель по математической.
{5x+3y=18,33x+10y=24,1
1. Введём обозначения.
Пусть x
ткани необходимо для пошива одного мужского и
метров ткани — для пошива одного детского пальто.
2. Перейдём к словесной модели.
Из 18,3 м ткани можно сшить 5 мужских и
детских пальто.
Сколько метров ткани необходимо для пошива одного мужского и одного детского пальто,
если из
м той же ткани можно сшить 3 мужских и
детских пальто?
Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
Пусть х изделий бригада должна была изготовить в 1 день по плану
(120/х) дней - бригада должна была работать
(х+2) - изделия бригада изготовляла фактически в 1 день
120/(х+2) дней - бригада работала фактически.
А так как, по условию задачи, бригада закончила
работу на 3 дня раньше срока, то составим уравнение:
120/х - 120/(х+2)=3
120(х+2) - 120х = 3х(х+2)
120x + 240 – 120x – 3x² – 6x = 0
3x² + 6x - 240 = 0 делим на 3
x² + 2x – 80 = 0
D = 4 + 4*1*80 = 324
x₁ = (- 2 – 18)/2 = - 10 < 0 не удовлетворяет условию задачи
x₂ = (- 2 + 18)/2 = 8
8 - изделий бригада рабочих изготовляла в 1 день по плану
ответ: 8 изделий