Составь словесную модель по математической:
{6x+5y=49
3x−2=2y
Две бригады работали на уборке свеклы.
В первый день одна бригада работала 6 ч., вторая — 5 ч., и собрали вместе _ ц свеклы.
Во второй день первая бригада за 3 ч. работы собрала свеклы_ (1. в 2 раза больше 2. на 2 ц меньше 3. на 2 ц блдьше) , чем вторая бригада за 2 ч.
Сколько центнеров свеклы собрала каждая бригада за 1 ч. работы?
1. ответ: Ж12
2. 2 + 8 + 6 + 2 + 4 + 6 + 8 + 3 + 4 + 5 + 4 = 52
3. 19 × 16 = 304 (всё поле)
Составим пропорцию:
304 - 100%
52 - x
x = (52×100) / 304 = 17. 1, округляем и получаем 17.
ответ: 17.
4.
ответ: 5
5. ответ: 3
6.
ответ: 8
7. 7x^2 - 2x - 5 = 0
Сумма всех коэффициентов равна 0,
т.е. 7+(-2)+(-5)=0, значит;
x1 = 1 , x2 = c/a = -5/7
Больший корень: 1
ответ: 1
8. Известно, что угол BAC = 72°, и что треугольнтк равнобедренный.
Сумма всех углов треугольника равна 180°.
В равнобедренном треугольнике углы при основании равны, значит:
180° - 72° = 108°
108° : 2 = 54° (BAC и BCA)
ответ: 54.
9. Работаем с теоремой Пифагора:
c^2 = a^2 + b^2
c^2 = 6^2 + 8^2
c^2 = 36 + 64
c^2 = 100
c = 10
ответ: 10.
10. ответ: 2.
Пусть по плану требовалось x машин с грузоподъемностью (60/x) тонн каждая.
В связи с ремонтом взяли (x+1) машину с грузоподъемностью 60/(x+1) тонн каждая.
Так как в каждую машину стали загружать на 3 тонны меньше,
составим уравнение:
60/x - 60/(x+1) = 3
ОДЗ:
x(x+1) от сюда следует, что
x ≠ 0 ; x ≠ - 1
60(x+1) - 60x = 3 *x(x+1)
60x + 60 - 60x = 3x² + 3x
60 = 3x² + 3x
3x² + 3x - 60 = 0 |÷3
x² + x - 20 = 0
D(дискриминант) = 1² - 4*1*(-20) = 1 + 80 = 81 = 9²
x₁ = (-1 - 9)/(2*1) = -10/2 = -5 не удовл. условию задачи
x₂ = (-1 +9)/(2*1) = 8/2 = 4 машины - требовалось по плану
4 + 1 = 5 машин - использовали на самом деле.
60: 4 = 15 тонн - грузоподъемность по плану.
1. Вначале требовалось 4 машины .
2. На самом деле использовали 5 машин.
3. Планировалось перевозить 15 тонн груза на одной машине