Допустим, нам дано выражение a²+ab. Его можно разложить как a·a+ab. Как мы видим, и в первом, и во втором слагаемом есть буква a - она и будет общим множителем, который мы можем вынести за скобки: a(a+b)
Перейдём к числам. Допустим, дано выражение 4+8+20-14. Каждое слагаемое можно разложить на множители, причём множители берём всегда наименьшие: 2·2+2·2·2+2·2·5-2·7. Как мы видим, в каждом слагаемом есть одна двойка, которую можно вынести за скобки: 2·(2+2·2+2·5-7) = 2·(2+4+10-7) = 2·9 = 18
Насчёт a-b = -(b-a). Вот нам дали выражение a-b. Его, разумеется, тоже можно разложить: 1·a-1·b. И ели мы вынесем за скобки -1, то получится -1·(b-a). Почему же так произошло? А когда мы выносим общий множитель за скобки, мы делим и уменьшаемое, и вычитаемое на этот множитель. Т.е. a÷-1 = -a; -b÷-1 = b. И вот, магическими преобразованиями мы доказали, что a-b = -(b-a)
Полупериметр прямоугольника равен : 142 / 2 = 71 см
Длина другой стороны прямоугольника равна : (71 - х) см
Согласно условия задачи имеем : х * (71 - х) = 660
71х - x^2 = 660
x^2 - 71x + 660 = 0
D = (- 71)^2 - 4 * 1 * 660 = 5041 - 2640 = 2401
Sqrt(2401)= 49
x' = (- (- 71) + 49) / 2 * 1 = (71 + 49)/2 =120/2= 60 см
x" = (- (- 71) - 49) / 2 * 1 = (71 - 49) / 2 = 22/ 2 = 11 см
Стороны прямоугольника равны : 60 см и 11 см
Проверка : 1) (60 + 11) * 2 = 71 * 2 = 142 см - периметр прямоугольника
2) 60 * 11 = 660 см2 - площадь прямоугольника
Допустим, нам дано выражение a²+ab. Его можно разложить как a·a+ab. Как мы видим, и в первом, и во втором слагаемом есть буква a - она и будет общим множителем, который мы можем вынести за скобки: a(a+b)
Перейдём к числам. Допустим, дано выражение 4+8+20-14. Каждое слагаемое можно разложить на множители, причём множители берём всегда наименьшие: 2·2+2·2·2+2·2·5-2·7. Как мы видим, в каждом слагаемом есть одна двойка, которую можно вынести за скобки: 2·(2+2·2+2·5-7) = 2·(2+4+10-7) = 2·9 = 18
Насчёт a-b = -(b-a). Вот нам дали выражение a-b. Его, разумеется, тоже можно разложить: 1·a-1·b. И ели мы вынесем за скобки -1, то получится -1·(b-a). Почему же так произошло? А когда мы выносим общий множитель за скобки, мы делим и уменьшаемое, и вычитаемое на этот множитель. Т.е. a÷-1 = -a; -b÷-1 = b. И вот, магическими преобразованиями мы доказали, что a-b = -(b-a)