Очень просто. Обозначим катеты как a и b. По теореме Пифагора a^2 + b^2 = 15^2 = 225. Как известно, площадь прямоугольного треугольника равна половине произведения катетов: a*b*0.5 = 54. Составляем систему из этих двух уравнений. Решаем подстановкой, допустим, возьмем катет a: a = 54/(0.5*b) = 54*2/b = 108/b. Далее подставляем в первое уравнение. Только не пугайся, числа большие: (108/b)^2 + b^2 = 225; 11664/b^2 + b^2 = 225. Умножаем обе части на b (в этом отношении мы можем делать что угодно, ведь длина катета - величина положительная) : 11664 + b^4 = 225*b^2. Переносим все в левую часть: b^4 - 225*b^2 + 11664 = 0. Заменим b^2 на x, тогда b^4 = x^2: x^2 - 225x +11664 = 0. Решаем квадратное уравнение: дискриминант равен (-225)^2 - 4*1*11664 = 50625 - 46656 = 3969 = 63^2. Далее находим корни: x1 = (-(-225) - 63)/2*1 = (225-63)/2 = 162/2 = 81. Т. е. x1 = 81, а значит b1 = корень квадратный из 81 = 9 (помним: длина катета - величина положительная) . Т. е. один катет мы уже нашли - он равен 9 см. Второй корень уравнения лучше не искать, второй катет можно найти из подстановки a = 108/b = 108/9 = 12. Все. Мы нашли катеты, они равны 9 см и 12 см соответственно. Задача решена. Можно сделать проверку: площадь равна 0.5*a*b = 0.5*12*9 = 54 см^2.
cos²α = 1 - sin²α
cos²α = 1 - 576/625
cos²α = 49/625, cosα= -7/25 (перед дробью знак минус, т.к. α∈(π;3π/2) , а косинус в этом промежутке отрицательный)
2. sin (3π/2 - 2x) = sinx, (3π/2 ; 5π/2)
Применяем формулы приведения, и получаем:
-cos2x = sinx |:(-1)
cos2x = -sinx
cos²x-sin²x = -sinx
cos²x-sin²x+sinx = 0
1 - sin²x - sin²x + sinx = 0
-2sin²x + sinx + 1 =0
Делаем замену: sinx=a
-2a² + a + 1 = 0
D = 9, √D = 3
a1 = 1, a2 = - 1/2
sinx = 1 sinx = -1/2
x = π/2 + 2πn x = (-1)^n arcsin(-1/2) + πn
x=(-1)^n+1 π/6 + πn
Перебираем корни:
n=0 n=1 n=2
x=π/2 - не подходит x=5π/2 - подходит x=9π/2 - не подходит
x=-π/6 - не подходит x=7π/6 - не подходит x=11π/6 - подходит
n=3
x=13π/2 - не подходит
x=19π/6 - не подходит.
Дальше корни будут больше, и не войдут в промежуток. Значит, только 2 корня