В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Mazhor1
Mazhor1
13.06.2022 18:53 •  Алгебра

Составить уравнение кривой, проходящей через точку (3; 4), если угловой коэффициент касательной к этой кривой в любой её точке равен -2x нужно подробное решение

Показать ответ
Ответ:
mokeevayulichk48
mokeevayulichk48
08.07.2020 06:17
Угловой коэффициент касательной равен производной функции в точке касания, зачит  y'=x^2-2x.

Чтобы найти саму функцию, то есть первообразную, надо проинтегрировать производную.

y(x)=\int (x^2-2x)dx=\frac{x^3}{3}-2\frac{x^2}{2}+C=\frac{x^3}{3}-x^2+C

Найдём С. Подставим координаты точки в первообразную.

A(3,4),\; \; 4=\frac{3^3}{3}-3^2+C\\\\4=9-9+C,\; C=4\\\\y(x)=\frac{x^3}{3}-x^2+4
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота