С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
2. Студент получил стипендию 600 руб. купюрами достоинством 50 руб. и 10 руб., всего 24 купюры. Сколько всего было выдано студенту 50-рублевых и 10-рублевых купюр в отдельности?
5. Имеет ли решение система? сколько? 5x - y = 3 и -15x+3y=9 умножаем первое на -3 -15x+3y=-9 -15x+3y=9 Решений нет отно и тоже выражение имеет разные значения
1. решите систему уравнений 3x-y=3 и 5x+2y=16 первое на 2 умножаем и складываем со вторым 6x-2y+5x+2y=6+16 11x=22 x=2 y=3x-3=6-3=3
4. График линейной функции пересекает координат в точках (3 ; 0)(0 ; -4) задайте эту функцию формулой . y-ax+b общий вид линейной функции 0=3*a+b -4=0+b b=-4 a=4/3 y=4/3x-4
<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение:
x - 50 рублевых
y - 10 рублевых
x+y=24
50x+10y=600
y=24-x
50x+240-10x=600
40x=360
x=9
y=5
50 рублевых 9 10 рублевых 15
50*9+15*10=600
5. Имеет ли решение система? сколько?
5x - y = 3
и
-15x+3y=9
умножаем первое на -3
-15x+3y=-9
-15x+3y=9
Решений нет отно и тоже выражение имеет разные значения
1. решите систему уравнений
3x-y=3
и
5x+2y=16
первое на 2 умножаем и складываем со вторым
6x-2y+5x+2y=6+16
11x=22
x=2
y=3x-3=6-3=3
4. График линейной функции пересекает координат в точках (3 ; 0)(0 ; -4) задайте эту функцию формулой .
y-ax+b общий вид линейной функции
0=3*a+b
-4=0+b
b=-4
a=4/3
y=4/3x-4