поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5
Объяснение:
поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5
1) -2 5 -7 1 0 0 2) С непосредственной подстановкой я думаю все ясно. А выполнить проверку с схемы Горнера можно найдя остаток от деления исходного многочлена на (x-x0) (ведь по теореме Безу и будет значением многочлена в точке x0). Схему Горнера тут неудобно оформлять, поэтому давай сам как нибудь. 3) В соответствии с теоремой о рациональных корнях многочлена с целыми коффициентами, целые корни должны быть делителями свободного члена 3. Делители тройки: 1, -1, 3, -3. Убеждаемся что только числа 1 и 3 являются корнями. ответ: x=1, x=3 4) Сначала поищем целые корни. Проверим числа 1, -1, 3, -3, 9, -9. 1 - корень, поэтому делим исходный многочлен на (x-1) и получаем 5x^2+14x+9. Теперь решаем квадратное уравнение находим еще два корня x=-9/5 и x=-1 Таким образом 5x^3+9x^2-5x-9=(x-1)(x+1)(5x+9)
поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5
Объяснение:
поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5
2) С непосредственной подстановкой я думаю все ясно. А выполнить проверку с схемы Горнера можно найдя остаток от деления исходного многочлена на (x-x0) (ведь по теореме Безу и будет значением многочлена в точке x0). Схему Горнера тут неудобно оформлять, поэтому давай сам как нибудь.
3) В соответствии с теоремой о рациональных корнях многочлена с целыми коффициентами, целые корни должны быть делителями свободного члена 3.
Делители тройки: 1, -1, 3, -3. Убеждаемся что только числа 1 и 3 являются корнями. ответ: x=1, x=3
4) Сначала поищем целые корни. Проверим числа 1, -1, 3, -3, 9, -9. 1 - корень, поэтому делим исходный многочлен на (x-1) и получаем
5x^2+14x+9. Теперь решаем квадратное уравнение находим еще два корня x=-9/5 и x=-1
Таким образом 5x^3+9x^2-5x-9=(x-1)(x+1)(5x+9)