3 или 4 слагаемых с минусами.
Объяснение:
Я уже решал эту задачу.
Мы можем поставить 1, 2 или 3 минуса.
Если поставить один или три минуса, то получится:
(a - b + c + d)^2 = ((a+c+d) - b)^2 = (a+c+d)^2 - 2b(a+c+d) + b^2
Или, с тремя минусами:
(a - b - c - d)^2 = (a - (b+c+d))^2 = a^2 - 2a(b+c+d) + (b+c+d)^2
В обоих случаях получается три слагаемых с минусами.
Если же поставить два минуса, то получится:
(a + b - c - d)^2 = ((a+b) - (c+d))^2 = (a+b)^2 - 2(a+b)(c+d) + (c+d)^2 =
= (a+b)^2 - 2(ac+bc+ad+bd) + (c+d)^2
Здесь получается 4 слагаемых с минусом.
1. скорость катера по озеру=х, по течению =х+3,
тогда время ( 5/х+3)+(8/х) =1, отсюда 5х+8х+24=х^2+3х,
х^2-10х-24=0 отсюда х=12, т. е. это скорость катера по озеру, тогда по течению будет 12+3=15 км/час.
2.Пусть первая бригада выполнит работу за х часов, тогда вторая за х+10.
Имеем уравнение:
1/х+1/х+10=1/12 Решаем уравнение и получаем х^2-14х-120=0,
отсюда х=20 дн. т. е. первая бригада работая в одиночку выполнит работу за 20дн. , вторая соответственно за 30дн.
Можно проверить подстановкой результатов в исх. уравнения.
3 или 4 слагаемых с минусами.
Объяснение:
Я уже решал эту задачу.
Мы можем поставить 1, 2 или 3 минуса.
Если поставить один или три минуса, то получится:
(a - b + c + d)^2 = ((a+c+d) - b)^2 = (a+c+d)^2 - 2b(a+c+d) + b^2
Или, с тремя минусами:
(a - b - c - d)^2 = (a - (b+c+d))^2 = a^2 - 2a(b+c+d) + (b+c+d)^2
В обоих случаях получается три слагаемых с минусами.
Если же поставить два минуса, то получится:
(a + b - c - d)^2 = ((a+b) - (c+d))^2 = (a+b)^2 - 2(a+b)(c+d) + (c+d)^2 =
= (a+b)^2 - 2(ac+bc+ad+bd) + (c+d)^2
Здесь получается 4 слагаемых с минусом.
1. скорость катера по озеру=х, по течению =х+3,
тогда время ( 5/х+3)+(8/х) =1, отсюда 5х+8х+24=х^2+3х,
х^2-10х-24=0 отсюда х=12, т. е. это скорость катера по озеру, тогда по течению будет 12+3=15 км/час.
2.Пусть первая бригада выполнит работу за х часов, тогда вторая за х+10.
Имеем уравнение:
1/х+1/х+10=1/12 Решаем уравнение и получаем х^2-14х-120=0,
отсюда х=20 дн. т. е. первая бригада работая в одиночку выполнит работу за 20дн. , вторая соответственно за 30дн.
Можно проверить подстановкой результатов в исх. уравнения.