В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
rukisha1107
rukisha1107
17.07.2022 13:06 •  Алгебра

Составьте уравнение касательной к графику функции y=f(x) в точке с абсциссой x=a, если: 1) f(x)=3x-2/3-x[дробь], a=2 2) f(x)=2√3x-5, a=2

Показать ответ
Ответ:
elinatyul
elinatyul
06.10.2020 01:18
Уравнение касательной к кривой у=f(x)  в точке а  имеет вид:
у - f(а)= f`(а)·(x-а)

1)
По условию:
f(x)=(3х-2)/(3-х)
а=2

f(а)=(3·2-2)/(3-2)=4/1=4
f`(x)=((3х-2)`·(3-x)-(3x-2)·(3-x)`)/(3-x)²=(3·(3-x)-(3x-2)·(-1))/(3-x)²=
=(9-3x+3x-2)/(3-x)²=7/(3-x)²
f`(a)=7/(3-2)²=7
y-4=7·(x-2)
y=7x-10
О т в е т. у=7х-10

2) f(x)=2√(3x-5), a=2

f(x)=f(2)=2√(3·2-5)=2√1=2
f`(x)=2·(1/2√(3x-5))·(3x-5)`=3/√(3x-5)
f`(a)=f`(2)=3/√(3·2-5)=3/√(6-5)=3

y-2=3·(x-2)
y=3x-4

О т в е т. у=3х-4
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота