В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
89539123898
89539123898
10.02.2020 19:40 •  Алгебра

Составьте уравнение касательной к графику функции y=lnx/2, которая проходит через начало координат : 3

Показать ответ
Ответ:
ktjy123
ktjy123
02.10.2020 05:36
D(y)∈(0;∞)
(0;0)∉D(y)⇒касательную провести нельзя
0,0(0 оценок)
Ответ:
Nina34732
Nina34732
11.01.2024 21:46
Чтобы составить уравнение касательной к графику функции, проходящей через начало координат, нам понадобится найти значение производной функции в точке, в которой касательная проходит через начало координат.

1. Найдем производную функции y = ln(x)/2.
Для этого воспользуемся правилом дифференцирования функции ln(x), а именно:
(ln(x))' = 1/x.

Применим это правило:
(ln(x)/2)' = (1/x)/2 = 1/(2x).

Таким образом, производная функции y = ln(x)/2 равна 1/(2x).

2. Найдем значение x, при котором касательная проходит через начало координат.
В данной задаче известно, что проходит через начало координат, а значит, что координаты точки, через которую проходит касательная, равны (0,0).
Подставляем значения в уравнение функции:
y = ln(x)/2,
0 = ln(0)/2.

Здесь возникает проблема, так как ln(0) не определено, то есть является бесконечностью. Чтобы решить эту проблему, воспользуемся пределами.
Предел ln(x) при x стремящемся к 0 равен минус бесконечности. То есть ln(0) = -∞.

Подставляем этот результат обратно в уравнение:
0 = -∞/2.

Так как -∞/2 равно минус бесконечности, получаем, что касательная проходит через начало координат, если x стремится к 0, а y равно минус бесконечности.

3. Теперь, имея значение x, при котором касательная проходит через начало координат, и производную функции, найдем уравнение касательной.
Воспользуемся формулой уравнения касательной в точке (x0 , y0):
y - y0 = f'(x0) * (x - x0).

В нашем случае:
x0 = 0,
y0 = 0,
f'(x0) = 1/(2x0) = 1/(2*0) = неопределено (бесконечность).

Теперь подставим значения в формулу уравнения касательной:
y - 0 = неопределено * (x - 0),
y = неопределено * x.

Здесь также возникает неопределенность, так как умножение бесконечности на 0 является неопределенным. Чтобы решить эту проблему, воспользуемся пределами.
Предел неопределенности при x стремящемся к 0 равен 0. То есть неопределено * 0 = 0.

Подставляем этот результат обратно в уравнение:
y = 0.

Таким образом, уравнение касательной к графику функции y = ln(x)/2, проходящей через начало координат (0,0), имеет вид y = 0.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота