Чтобы составить уравнение касательной к графику функции, проходящей через начало координат, нам понадобится найти значение производной функции в точке, в которой касательная проходит через начало координат.
1. Найдем производную функции y = ln(x)/2.
Для этого воспользуемся правилом дифференцирования функции ln(x), а именно:
(ln(x))' = 1/x.
Применим это правило:
(ln(x)/2)' = (1/x)/2 = 1/(2x).
Таким образом, производная функции y = ln(x)/2 равна 1/(2x).
2. Найдем значение x, при котором касательная проходит через начало координат.
В данной задаче известно, что проходит через начало координат, а значит, что координаты точки, через которую проходит касательная, равны (0,0).
Подставляем значения в уравнение функции:
y = ln(x)/2,
0 = ln(0)/2.
Здесь возникает проблема, так как ln(0) не определено, то есть является бесконечностью. Чтобы решить эту проблему, воспользуемся пределами.
Предел ln(x) при x стремящемся к 0 равен минус бесконечности. То есть ln(0) = -∞.
Подставляем этот результат обратно в уравнение:
0 = -∞/2.
Так как -∞/2 равно минус бесконечности, получаем, что касательная проходит через начало координат, если x стремится к 0, а y равно минус бесконечности.
3. Теперь, имея значение x, при котором касательная проходит через начало координат, и производную функции, найдем уравнение касательной.
Воспользуемся формулой уравнения касательной в точке (x0 , y0):
y - y0 = f'(x0) * (x - x0).
Теперь подставим значения в формулу уравнения касательной:
y - 0 = неопределено * (x - 0),
y = неопределено * x.
Здесь также возникает неопределенность, так как умножение бесконечности на 0 является неопределенным. Чтобы решить эту проблему, воспользуемся пределами.
Предел неопределенности при x стремящемся к 0 равен 0. То есть неопределено * 0 = 0.
Подставляем этот результат обратно в уравнение:
y = 0.
Таким образом, уравнение касательной к графику функции y = ln(x)/2, проходящей через начало координат (0,0), имеет вид y = 0.
(0;0)∉D(y)⇒касательную провести нельзя
1. Найдем производную функции y = ln(x)/2.
Для этого воспользуемся правилом дифференцирования функции ln(x), а именно:
(ln(x))' = 1/x.
Применим это правило:
(ln(x)/2)' = (1/x)/2 = 1/(2x).
Таким образом, производная функции y = ln(x)/2 равна 1/(2x).
2. Найдем значение x, при котором касательная проходит через начало координат.
В данной задаче известно, что проходит через начало координат, а значит, что координаты точки, через которую проходит касательная, равны (0,0).
Подставляем значения в уравнение функции:
y = ln(x)/2,
0 = ln(0)/2.
Здесь возникает проблема, так как ln(0) не определено, то есть является бесконечностью. Чтобы решить эту проблему, воспользуемся пределами.
Предел ln(x) при x стремящемся к 0 равен минус бесконечности. То есть ln(0) = -∞.
Подставляем этот результат обратно в уравнение:
0 = -∞/2.
Так как -∞/2 равно минус бесконечности, получаем, что касательная проходит через начало координат, если x стремится к 0, а y равно минус бесконечности.
3. Теперь, имея значение x, при котором касательная проходит через начало координат, и производную функции, найдем уравнение касательной.
Воспользуемся формулой уравнения касательной в точке (x0 , y0):
y - y0 = f'(x0) * (x - x0).
В нашем случае:
x0 = 0,
y0 = 0,
f'(x0) = 1/(2x0) = 1/(2*0) = неопределено (бесконечность).
Теперь подставим значения в формулу уравнения касательной:
y - 0 = неопределено * (x - 0),
y = неопределено * x.
Здесь также возникает неопределенность, так как умножение бесконечности на 0 является неопределенным. Чтобы решить эту проблему, воспользуемся пределами.
Предел неопределенности при x стремящемся к 0 равен 0. То есть неопределено * 0 = 0.
Подставляем этот результат обратно в уравнение:
y = 0.
Таким образом, уравнение касательной к графику функции y = ln(x)/2, проходящей через начало координат (0,0), имеет вид y = 0.