Самое очевидное --графическое решение... кубическая парабола --функция монотонно возрастающая, синусоида --вытянута в три раза вдоль оси ОУ и сжата в 8 раз вдоль оси ОХ корни --это точки пересечения графиков... пересечение же возможно только на промежутке для у ∈ [-3; 3], следовательно для х ∈ [-∛3; ∛3] это примерно (-1.44; 1.44), т.е. немного у'же промежутка (-π/2; π/2) функция у=sin(8x) достигает максимума на этом промежутке несколько раз: у ' = 8cos(8x) = 0 ---> 8x = π/2 + πk; x = π/16 + πk/8 -π/2 < x < π/2 -π/2 < π/16 + πk/8 < π/2 -8π < π + 2πk < 8π -8 < 1 + 2k < 8 -9 < 2k < 7 -4.5 < k < 3.5 причем k∈Z, т.е. k={-4; -3; -2; -1; 0; 1; 2; 3} это количество экстремумов (максимумов и минимумов), пересечение графиков возможно в промежутках между экстремумами... таких промежутков семь)) графическая иллюстрация прилагается))
x(5+x)=0
x=0
x=-5
б) 3х2 - 27 = 0;
3(x2-9)=0
x=3
x=-3
в) 3х2 + 7 = 0
решений нет в дейтвительныъ числах
.2. Решите уравнение по формуле х1, 2 =
а) х2 -11х + 24 = 0;
ч12=(11+-√121-96)/2=11+-5/2= 8 3
x=3
x=8
б) 2х2-х-15 = 0
x12=(1+-√1+120)/4=(1+-11)/4=3 -10/4
;в) x2 + х - 4 = 0.
X12=(-1+-√1+16)/2=(-1+-√17)/2
3. Решите уравнение:а) 4х2+ х + 7 = 0;
D=1-4*4*7<0
решений нет
б) 4х2 - 36х + 81 = 0;
D=1296-1296=0
(2x-9)^2=0
x=9/2
в) 4х2 - 55х + 110 = 0.
D=3025-1760=1265
x12=(55+-√1265)/8
4. Найдите корни уравнения (2х + 5)2 + (5x - 3)2 = 75 + 2х
4x2+20x+25+25x2-30x+9=75+2x
29x2-8x-41=0
D=64+4756=4820
x12=(8+-√4820)/58
.5. Для всякого арешите уравнение х2- (4а + 1)х + 4а = 0.
D=16a²+8a+1-16a=16a²-8a+1=(4a-1)²
при ф=1/4 одно решение
при других два решения
x=(4a+1)+-!4a-1!/2
6*. При каких bуравнение 2х2 + bх + 8 = 0 имеет один корень? Для каждого такогоbнайдите этот корень.
D=b²-64=0
b=8
b=-8
2x2+8x+8=0
x=-2
2x2-8x+8=0
x=2
кубическая парабола --функция монотонно возрастающая, синусоида --вытянута в три раза вдоль оси ОУ
и сжата в 8 раз вдоль оси ОХ
корни --это точки пересечения графиков...
пересечение же возможно только на промежутке для у ∈ [-3; 3],
следовательно для х ∈ [-∛3; ∛3] это примерно (-1.44; 1.44), т.е.
немного у'же промежутка (-π/2; π/2)
функция у=sin(8x) достигает максимума на этом промежутке несколько раз: у ' = 8cos(8x) = 0 ---> 8x = π/2 + πk; x = π/16 + πk/8
-π/2 < x < π/2
-π/2 < π/16 + πk/8 < π/2
-8π < π + 2πk < 8π
-8 < 1 + 2k < 8
-9 < 2k < 7
-4.5 < k < 3.5 причем k∈Z, т.е. k={-4; -3; -2; -1; 0; 1; 2; 3}
это количество экстремумов (максимумов и минимумов),
пересечение графиков возможно в промежутках между экстремумами...
таких промежутков семь))
графическая иллюстрация прилагается))