по формуле раскладываем sin3x и cos 4x, получаем sinx (3sinx-4sin^3x)+ 8cos^4x-8cos^2x+1; -8cos^2x выносим за скобку, так же выносим за скобку 4sinx получаем 4sin^2x (3/4-sin^2x)- 8cos^2x(1-cos^2x)+1 видим, что 1-cos^2x=sin^2x, в первую скобку добавим +1 -1 получим:4sin^2x (3/4+1-1-sin^2x)- 8cos^2x*sin^2x+1 в первой скобке видим 1-sin^2x=cos^2x, далее раскрываем первую скобку 4sin^2x*(-1/4)+4sin^2xcos^2x- 8cos^2x*sin^2x+1, упростим выражения с синкос получим: -sin^2x-4sin^2xcos^2x+1, вспоминаем,что cos^2x=1-sin^2x, получаем cos^2x-4sin^2xcos^2x, 4cos^2x за скобку получаем 4cos^2x(1/4-sin^2x), добавим в скобку +1-1 получим 4cos^2x (-3/4+cos^2x), раскроем скобку -3cos^2x +4cos^4x, -cosx за скобку получим cosx*cos3x=0 затем приравниваем поочередно к нулю cosx и cos3x и записываем из табл ответ.
Объяснение:
P.s если я тебе сделайте мой ответ лучшим для продвижения
Для того чтобы найти область определения функции, нужно определить, для каких значений аргумента функция имеет смысл и является определенной.
В данном случае у нас есть функция f(x), заданная формулой:
f(x) = √(9 - 4x^2)
Для того чтобы вычислить область определения этой функции, нужно учесть два фактора:
1. Ограничение по определению корня: извлечение корня имеет смысл только для неотрицательных чисел или нуля. Значит, выражение (9 - 4x^2) должно быть больше или равно нулю.
9 - 4x^2 ≥ 0
2. Ограничение по определению аргумента: знаменатель не должен равняться нулю, так как деление на ноль не определено. Значит, рассмотрим условие:
9 - 4x^2 > 0
Перейдем к решению первого неравенства:
9 - 4x^2 ≥ 0
Для упрощения неравенства, перенесем все в левую часть:
4x^2 - 9 ≥ 0
Выражение в левой части разности можно преобразовать к виду разности квадратов:
(2x - 3)(2x + 3) ≥ 0
Рассмотрим значения, при которых произведение двух множителей положительно или равно нулю.
1) Если (2x - 3) ≥ 0 и (2x + 3) ≥ 0, то оба множителя отрицательны или равны нулю:
2x - 3 ≥ 0 => 2x ≥ 3 => x ≥ 3/2
2x + 3 ≥ 0 => 2x ≥ -3 => x ≥ -3/2
2) Если (2x - 3) ≤ 0 и (2x + 3) ≤ 0, то оба множителя положительны или равны нулю:
2x - 3 ≤ 0 => 2x ≤ 3 => x ≤ 3/2
2x + 3 ≤ 0 => 2x ≤ -3 => x ≤ -3/2
Итак, область определения функции f(x) состоит из значений x, для которых выполняются все полученные неравенства одновременно.
Вариант 1: x ≥ 3/2 и x ≥ -3/2
То есть, область определения включает все значения x, которые больше или равны 3/2.
Вариант 2: x ≤ 3/2 и x ≤ -3/2
То есть, область определения включает все значения x, которые меньше или равны -3/2.
2) Учитывая ограничение по определению аргумента, рассмотрим второе неравенство:
9 - 4x^2 > 0
Для упрощения неравенства, перенесем все в левую часть:
4x^2 - 9 < 0
Как и в предыдущем случае, выражение в левой части можно преобразовать к виду разности квадратов:
(2x - 3)(2x + 3) < 0
Рассмотрим значения, при которых произведение двух множителей отрицательно.
1) Если (2x - 3) > 0 и (2x + 3) < 0, то один множитель положителен, а второй отрицателен:
2x - 3 > 0 => 2x > 3 => x > 3/2
2x + 3 < 0 => 2x < -3 => x < -3/2
2) Если (2x - 3) < 0 и (2x + 3) > 0, то один множитель отрицателен, а второй положителен:
2x - 3 < 0 => 2x < 3 => x < 3/2
2x + 3 > 0 => 2x > -3 => x > -3/2
Таким образом, область определения функции f(x) состоит из значений x, для которых выполняется второе неравенство.
Вариант 1: x > 3/2 и x < -3/2
То есть, область определения включает все значения x, которые больше 3/2 и меньше -3/2.
Вариант 2: x < 3/2 и x > -3/2
То есть, область определения включает все значения x, которые меньше 3/2 и больше -3/2.
Итак, область определения функции f(x) складывается из пересечения областей, полученных в каждом случае.
Область определения функции f(x) состоит из всех значений x, которые больше или равны 3/2, и меньше или равны -3/2.
Окончательно, область определения функции f(x): x ≥ 3/2 и x ≤ -3/2.
по формуле раскладываем sin3x и cos 4x, получаем sinx (3sinx-4sin^3x)+ 8cos^4x-8cos^2x+1; -8cos^2x выносим за скобку, так же выносим за скобку 4sinx получаем 4sin^2x (3/4-sin^2x)- 8cos^2x(1-cos^2x)+1 видим, что 1-cos^2x=sin^2x, в первую скобку добавим +1 -1 получим:4sin^2x (3/4+1-1-sin^2x)- 8cos^2x*sin^2x+1 в первой скобке видим 1-sin^2x=cos^2x, далее раскрываем первую скобку 4sin^2x*(-1/4)+4sin^2xcos^2x- 8cos^2x*sin^2x+1, упростим выражения с синкос получим: -sin^2x-4sin^2xcos^2x+1, вспоминаем,что cos^2x=1-sin^2x, получаем cos^2x-4sin^2xcos^2x, 4cos^2x за скобку получаем 4cos^2x(1/4-sin^2x), добавим в скобку +1-1 получим 4cos^2x (-3/4+cos^2x), раскроем скобку -3cos^2x +4cos^4x, -cosx за скобку получим cosx*cos3x=0 затем приравниваем поочередно к нулю cosx и cos3x и записываем из табл ответ.
Объяснение:
P.s если я тебе сделайте мой ответ лучшим для продвижения
В данном случае у нас есть функция f(x), заданная формулой:
f(x) = √(9 - 4x^2)
Для того чтобы вычислить область определения этой функции, нужно учесть два фактора:
1. Ограничение по определению корня: извлечение корня имеет смысл только для неотрицательных чисел или нуля. Значит, выражение (9 - 4x^2) должно быть больше или равно нулю.
9 - 4x^2 ≥ 0
2. Ограничение по определению аргумента: знаменатель не должен равняться нулю, так как деление на ноль не определено. Значит, рассмотрим условие:
9 - 4x^2 > 0
Перейдем к решению первого неравенства:
9 - 4x^2 ≥ 0
Для упрощения неравенства, перенесем все в левую часть:
4x^2 - 9 ≥ 0
Выражение в левой части разности можно преобразовать к виду разности квадратов:
(2x - 3)(2x + 3) ≥ 0
Рассмотрим значения, при которых произведение двух множителей положительно или равно нулю.
1) Если (2x - 3) ≥ 0 и (2x + 3) ≥ 0, то оба множителя отрицательны или равны нулю:
2x - 3 ≥ 0 => 2x ≥ 3 => x ≥ 3/2
2x + 3 ≥ 0 => 2x ≥ -3 => x ≥ -3/2
2) Если (2x - 3) ≤ 0 и (2x + 3) ≤ 0, то оба множителя положительны или равны нулю:
2x - 3 ≤ 0 => 2x ≤ 3 => x ≤ 3/2
2x + 3 ≤ 0 => 2x ≤ -3 => x ≤ -3/2
Итак, область определения функции f(x) состоит из значений x, для которых выполняются все полученные неравенства одновременно.
Вариант 1: x ≥ 3/2 и x ≥ -3/2
То есть, область определения включает все значения x, которые больше или равны 3/2.
Вариант 2: x ≤ 3/2 и x ≤ -3/2
То есть, область определения включает все значения x, которые меньше или равны -3/2.
2) Учитывая ограничение по определению аргумента, рассмотрим второе неравенство:
9 - 4x^2 > 0
Для упрощения неравенства, перенесем все в левую часть:
4x^2 - 9 < 0
Как и в предыдущем случае, выражение в левой части можно преобразовать к виду разности квадратов:
(2x - 3)(2x + 3) < 0
Рассмотрим значения, при которых произведение двух множителей отрицательно.
1) Если (2x - 3) > 0 и (2x + 3) < 0, то один множитель положителен, а второй отрицателен:
2x - 3 > 0 => 2x > 3 => x > 3/2
2x + 3 < 0 => 2x < -3 => x < -3/2
2) Если (2x - 3) < 0 и (2x + 3) > 0, то один множитель отрицателен, а второй положителен:
2x - 3 < 0 => 2x < 3 => x < 3/2
2x + 3 > 0 => 2x > -3 => x > -3/2
Таким образом, область определения функции f(x) состоит из значений x, для которых выполняется второе неравенство.
Вариант 1: x > 3/2 и x < -3/2
То есть, область определения включает все значения x, которые больше 3/2 и меньше -3/2.
Вариант 2: x < 3/2 и x > -3/2
То есть, область определения включает все значения x, которые меньше 3/2 и больше -3/2.
Итак, область определения функции f(x) складывается из пересечения областей, полученных в каждом случае.
Область определения функции f(x) состоит из всех значений x, которые больше или равны 3/2, и меньше или равны -3/2.
Окончательно, область определения функции f(x): x ≥ 3/2 и x ≤ -3/2.