В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Maaaarrr
Maaaarrr
24.09.2021 06:37 •  Алгебра

Составьте уравнение с целым коэффициентом с корнями 4 и 6​

Показать ответ
Ответ:
munisa333
munisa333
13.11.2020 10:20
 
1 выражение: С учетом комментариев к задаче:

\dispaystyle 1*3+2*5+...+n(2n+1)= \frac{n(4n^2+9n+5)}{6}

1) докажем для n=1

\dispaystyle 1*3= \frac{1(4+9+5)}{6}\\3= \frac{18}{6}\\3=3

2) допустим что равенство справедливо для n=k
докажем что оно справедливо для n=k+1

\dispaystyle 1*3+2*5+...+k(2k+1)+(k+1)(2k+3)=

сумма первых слагаемых до n=k по предположению равна дроби. Заменим

\dispaystyle \frac{k(4k^2+9k+5)}{6}+(k+1)*(2k+3)=\\ \frac{k(4k^2+9k+5)+6(2k^2+5k+3)}{6}=\\= \frac{4k^3+9k^2+5k+12k^2+30k+18}{6}=\\= \frac{4k^3+21k^2+35k+18}{6}=\\ \frac{(k+1)(4k^2+17k+18)}{6}

теперь преобразуем правую часть равенства

\dispaystyle \frac{(k+1)(4(k+1)^2+9(k+1)+5)}{6}= \frac{(k+1)(4k^2+17k+18)}{6}

Мы видим что равенство справедливо. 

Таким образом, согласно методу математической индукции, исходное равенство справедливо для любого натурального n.

2 Выражение:

\dispaystyle \frac{1}{2*4}+ \frac{1}{4*6}+...+ \frac{1}{2n(2n+2)}= \frac{n}{4n+4}

1) докажем для n=1

\dispaystyle \frac{1}{2*4}= \frac{1}{4+4}\\ \frac{1}{8}= \frac{1}{8}

2) предположим что равенство справедливо для n=k
докажем что справедливо для n=k+1

\dispaystyle \frac{1}{2*4}+ \frac{1}{4*6}+...+ \frac{1}{2k(2k+2)}+ \frac{1}{2(k+1)(2k+4)} =\\= \frac{k}{4k+4}+ \frac{1}{4(k+1)(k+2)}= \frac{k(k+2)+1}{4(k+1)(k+2)}=\\= \frac{k^2+2k+1}{4(k+1)(k+2)}= \frac{(k+1)^2}{4(k+1)(k+2)}= \frac{k+1}{4(k+2)}

рассмотрим правую часть

\dispaystyle \frac{k+1}{4(k+1)+4}= \frac{k+1}{4k+8}= \frac{k+1}{4(k+2)}

Мы видим что равенство справедливо. 

Таким образом, согласно методу математической индукции, исходное равенство справедливо для любого натурального n.
0,0(0 оценок)
Ответ:
mikhdina24
mikhdina24
11.08.2021 17:06

Задать вопрос

Войти

АнонимГеометрия13 мая 17:10

треугольник MNP равнобедренный. один из углов равен 112 градусам. найти углы

ответ или решение1

Боброва Кира

Рассмотрим два возможный случая.

1 случай.

Данный угол величиной 112° является углом при вершине данного равнобедренного треугольника.

Тогда два других угла при основании будут равны между собой.

Обозначим через x величину этих углов.

Так как при сложении величин всех трех углов всякого треугольника в результате получается 180°, можем составить следующее уравнение:

х + х + 112 = 180,

решая которое, получаем:

2х + 112 = 180;

(2х + 112) / 2 = 180 / 2;

х + 56 = 90;

х = 90 - 56 = 34°.

2 случай.

Данный угол величиной 112° является углом при основании данного равнобедренного треугольника.

Тогда другой угол при основании также должен составлять 112°.

Так как суммы этих двух углов, равная 112 + 112 = 224° больше 180°, то такого треугольника не существует.

ответ: 112°, 54°, 54°.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота