Коэффициент k в построении графика линейной функции отвечает за угол наклона прямой к положительному направлению оси Ох.
Свободный член b отвечает за смещение графика вдоль оси Оу путем параллельного переноса.
Дано: у = 8х + 3.
а) Чтобы график функции был параллелен графику данной функции, необходимо изменить только свободный член b. Причем число b может быть как положительным, так и отрицательным, либо нулем.
Например,
у = 3х + 17;
у = 3х - 29.
б) Чтобы график функции пересекал график данной функции, у него должен отличаться угол наклона к положительному направлению оси Ох. Следовательно в функции нужно заменить коэффициент а. Свободный член b можно менять, а можно оставить таким, какой он есть.
Например,
у = 7х + 5;
у = -12х - 11.
в) Общий вид линейной функции, график которой проходит через начало координат: у = kx.
Т.е. в формуле отсутствует свободный член b.
Чтобы график функции был параллелен графику данной функции, коэффициент а должен остаться таким же.
Объяснение:
Общий вид линейной функции: у = kx + b
Коэффициент k в построении графика линейной функции отвечает за угол наклона прямой к положительному направлению оси Ох.
Свободный член b отвечает за смещение графика вдоль оси Оу путем параллельного переноса.
Дано: у = 8х + 3.
а) Чтобы график функции был параллелен графику данной функции, необходимо изменить только свободный член b. Причем число b может быть как положительным, так и отрицательным, либо нулем.
Например,
у = 3х + 17;
у = 3х - 29.
б) Чтобы график функции пересекал график данной функции, у него должен отличаться угол наклона к положительному направлению оси Ох. Следовательно в функции нужно заменить коэффициент а. Свободный член b можно менять, а можно оставить таким, какой он есть.
Например,
у = 7х + 5;
у = -12х - 11.
в) Общий вид линейной функции, график которой проходит через начало координат: у = kx.
Т.е. в формуле отсутствует свободный член b.
Чтобы график функции был параллелен графику данной функции, коэффициент а должен остаться таким же.
-19 = 8x - 3
-8х = -3 + 19
-8х = 16 |:(-8)
x = -2
1) x^8 * x^2 = х^10
2) x^8 : x^2 = х^6
3) (x^8) ^2 = х^16
4) (x^4)^5 * x^2 : x^12 = х^20 * x^2 : x^12 = x^22 : x^12 = x^10
Объяснение:
При умножении чисел с одинаковыми основаниями, но разными показателями степеней, общее основание возводится в сумму степеней.
1) x^8 * x^2 = х^10
При делении чисел с одинаковыми основаниями, но разными показателями степеней, общее основание возводится в разницу степеней.
2)x^8 : x^2 = х^6
Возведение числа в степени в степень - это перемножение показателей степеней, при неизменном основании.
3) (x^8) ^2 = х^16
4) (x^4)^5 * x^2 : x^12 = х^20 * x^2 : x^12 = x^22 : x^12 = x^10