вершина параболы в точке (1, 5 ; -0,5) , ось абсцисс пересекает в двух точках ( 1 ; 0) и (2 ; 0) || 1 и 2 корни трехчлена 2x² - 6x + 4 || ,а ось ординат в точке (0; 4) пересекает в двух точках
3. Все целые числа кроме { -1 ; 0 ; 1 ; 2 ; 3 }
другое Найдите целые решения неравенства x² - 2x -6 ≤ 0
Соотношение параметров квадрата
Приведём формулы периметра Р и площади S квадрата через длину стороны а.
периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;
площадь квадрата S равна квадрату его стороны а: S = a²;
периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.
Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.
Вычисление увеличения периметра и площади квадрата
Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:
Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;
S1 = а1² = (3 * а)² = 9 * а².
После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:
для вычислений используем написанные выше формулы для площади S и периметра P;
чтобы узнать, во сколько раз увеличится периметр квадрата, нужно разделить Р1 на Р;
чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.
Согласно выше сказанного, ответим на вопросы задания:
во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);
во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).
заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.
ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.
2. График y = 2x² - 6x + 4 = 2(x -1,5)²- 0,5 изображен неправильно
вершина параболы в точке (1, 5 ; -0,5) , ось абсцисс пересекает в двух точках ( 1 ; 0) и (2 ; 0) || 1 и 2 корни трехчлена 2x² - 6x + 4 || ,а ось ординат в точке (0; 4) пересекает в двух точках
3. Все целые числа кроме { -1 ; 0 ; 1 ; 2 ; 3 }
другое Найдите целые решения неравенства x² - 2x -6 ≤ 0
ответ : { -1 ; 0 ; 1 ; 2 ; 3 }
5. Решите неравенство : (x² -5x +6) / ( x² -7x) ≤ 0
- - - - - - -
(x² -5x +6) / ( x² -7x) ≤ 0 ⇔(x-2)(x-3) / x(x-7) ≤ 0 ⇔
{ x ( x - 2)(x - 3) ( x-7 ) ≤ 0 ; x( x - 7 ) ≠ 0 .
решается методом интервалов
+ + + + + 0 - - - - - [2] + + + + + [3] - - - - - -(7 ) + + + + + + +
ответ : x ∈ (0 ; 2] ∪ [3 ; 7) .