По знаку коэффициента при переменной со старшей степенью можно определить куда пойдут ветви параболы - вверх иил вниз. Т.к. у нас -х², то коэффициент а = -1 => ветви вниз
Для начала найдём нули функции, приравняв её к нулю:
-х² + 12х + 45 = 0
Решаем через дискриминант это квадратное уравнение
D = 144 - 4 * (-1) * 45
D = 144 + 180
D = 324 = 18²
x₁ = (-12+18)/(-2) = 6/(-2) = -3
x₂ = (-12-18)/(-2) = (-30)/(-2) = 15
Наносим эти значения на числовую прямую и наносим знаки. Точки ВЫКОЛОТЫЕ, т.к. у нас СТРОГИЙ знак:
————————(-3)———————(15)——————>
- + -
Нам требуются такие промежутки, где х меньше нуля, поэтому нам подходят промежутки х ∈ (-∞; -3) ∪ (15; +∞)
1. Находим х из 1-го уравнения: х=5+у.
Найденный x подставляем во 2-е уравнение:
(5+у)^2 - 15у=109
25+10у+у^2 -15 у-109=0
у^2-5у-84=0
D=25+336=361
x=(5+-19)/2
x=12, тогда y=7
x=-7, тогда y=-12
ответ: (12;7) и (-7;-12)
2.
x+y=14
x*y=-72
x=14-у
(14-у)у=-72
14у-у^2+72=0
у^2-14у-72=0
D=196-4*1*(-72)=196+288=22^2
у1=14-22/2=-8/2=-4
y2=14+22/2=36/2=18
x1=14+4=18
x2=14-18=-4
ответ: -4 и 18
3. Решение в прикрепленном файле:
ответ: (0;-3) (3;0)
4. y=1 / 2 x2 и прямой y=3x-4
1/2x2=3x-4
x2-6x+8=0
D=36-32=4
x12=(6+-2)/2=4 2
x=4
y=8
x=2
y=2
х ∈ (-∞; -3) ∪ (15; +∞)
Объяснение:
По знаку коэффициента при переменной со старшей степенью можно определить куда пойдут ветви параболы - вверх иил вниз. Т.к. у нас -х², то коэффициент а = -1 => ветви вниз
Для начала найдём нули функции, приравняв её к нулю:
-х² + 12х + 45 = 0
Решаем через дискриминант это квадратное уравнение
D = 144 - 4 * (-1) * 45
D = 144 + 180
D = 324 = 18²
x₁ = (-12+18)/(-2) = 6/(-2) = -3
x₂ = (-12-18)/(-2) = (-30)/(-2) = 15
Наносим эти значения на числовую прямую и наносим знаки. Точки ВЫКОЛОТЫЕ, т.к. у нас СТРОГИЙ знак:
————————(-3)———————(15)——————>
- + -
Нам требуются такие промежутки, где х меньше нуля, поэтому нам подходят промежутки х ∈ (-∞; -3) ∪ (15; +∞)