Сделаем замену х² = |x|² и заменим |x| =t.
2t²-t+a=0/ Чтобы получилось более 3 корней в исходном уравнении, должно получиться два положительных значения t. D>0 и а/2>0.
1-4a>0, a/2>0.
a<0.25 и а>0⇒a∈(0;0.25).
task/30433512 Найти такие a, при котором уравнение: 2x²-|x|+ a=0 имеет более 3 корней
решение 2x²- |x|+ a=0 ⇔|x|²- (1/2)*|x|= -a/2 ⇔ ( | x| - 1/4 )² = - a/2 +1/16
( | x| - 1/4 )² = (1 -8a)/16 графическое решение см ПРИЛОЖЕНИЕ
не имеет корней , если (1 -8a)/16 < 0 ⇔ a > 1/8 a ∈(1/8 ; ∞)
два корня , если [ (1-8a)/16 =0 ; (1 -8a)/16 >1/16. a ∈( -∞,0) ∪ {1/8}
три корня , если (1 -8a)/16 = 1/16 a = 0
четыре корня , если 0 < (1 -8a)/16 <1/16 ⇔ a ∈ ( 0 ; 1/8 )
ответ : a∈ ( 0 ; 1/8 )
0 < (1 -8a)/16 <1/16 ⇔ 0 < 1 -8a < 1 ⇔ -1 < -8a < 0 ⇔ 0 < 8a < 1 ⇔ 0 < a < 1/8
Сделаем замену х² = |x|² и заменим |x| =t.
2t²-t+a=0/ Чтобы получилось более 3 корней в исходном уравнении, должно получиться два положительных значения t. D>0 и а/2>0.
1-4a>0, a/2>0.
a<0.25 и а>0⇒a∈(0;0.25).
task/30433512 Найти такие a, при котором уравнение: 2x²-|x|+ a=0 имеет более 3 корней
решение 2x²- |x|+ a=0 ⇔|x|²- (1/2)*|x|= -a/2 ⇔ ( | x| - 1/4 )² = - a/2 +1/16
( | x| - 1/4 )² = (1 -8a)/16 графическое решение см ПРИЛОЖЕНИЕ
не имеет корней , если (1 -8a)/16 < 0 ⇔ a > 1/8 a ∈(1/8 ; ∞)
два корня , если [ (1-8a)/16 =0 ; (1 -8a)/16 >1/16. a ∈( -∞,0) ∪ {1/8}
три корня , если (1 -8a)/16 = 1/16 a = 0
четыре корня , если 0 < (1 -8a)/16 <1/16 ⇔ a ∈ ( 0 ; 1/8 )
ответ : a∈ ( 0 ; 1/8 )
0 < (1 -8a)/16 <1/16 ⇔ 0 < 1 -8a < 1 ⇔ -1 < -8a < 0 ⇔ 0 < 8a < 1 ⇔ 0 < a < 1/8