ответ: Углы CKD и ADK равны как накрест лежащие при параллельных прямых. Значит, угол адк равен углу сдк, следовательно, треугольник CKD- равнобедренный : KC=CD=25. Найдем BK:BK=CK - BC = 25-5=20.Углы KMB и AMD равны как вертикальные. Стороны AM и BM равны, углы KMB и AMD равны как вертикальные, углы KBM и MAD равны как накрест лежащие при параллельных прямых, следовательно, эти треугольники равны, AD=KB=20. Проведем прямую CP, параллельную AB. Прямая AB параллельна CP, прямая AD параллельна BC, следовательно, четырёхугольник ABCP- параллелограмм, AP=BC=5, CP=AB=20. Найдем PD:PD=AD-AP=20-5=15. Рассмотрим треугольник CPD, заметим, что CP²+ PD²=400+ 225=625=CD².
Следовательно, по теореме, обратной теореме Пифагора, получаем, что треугольник CPD- прямоугольный, следовательно, CP- высота трапеции:
S=BC+ AD: 2 деление обозначь дробью, у меня не получилось. * CP= 5+20:2*20=250.
ответ: Углы CKD и ADK равны как накрест лежащие при параллельных прямых. Значит, угол адк равен углу сдк, следовательно, треугольник CKD- равнобедренный : KC=CD=25. Найдем BK:BK=CK - BC = 25-5=20.Углы KMB и AMD равны как вертикальные. Стороны AM и BM равны, углы KMB и AMD равны как вертикальные, углы KBM и MAD равны как накрест лежащие при параллельных прямых, следовательно, эти треугольники равны, AD=KB=20. Проведем прямую CP, параллельную AB. Прямая AB параллельна CP, прямая AD параллельна BC, следовательно, четырёхугольник ABCP- параллелограмм, AP=BC=5, CP=AB=20. Найдем PD:PD=AD-AP=20-5=15. Рассмотрим треугольник CPD, заметим, что CP²+ PD²=400+ 225=625=CD².
Следовательно, по теореме, обратной теореме Пифагора, получаем, что треугольник CPD- прямоугольный, следовательно, CP- высота трапеции:
S=BC+ AD: 2 деление обозначь дробью, у меня не получилось. * CP= 5+20:2*20=250.
ответ: 250.
Объяснение:
4x² - 12x + 9 = 0
D = b² - 4ac = 144 - 16×9 = 0
x = -b/2a
x = 12/8
x = 1,5
2) 5x² + 1 - 6x + 4x² = 0
9x² - 6x + 1 = 0
D = b² - 4ac = 36 - 36×1 = 0
x = -b/2a
x = 6/18
x = 1/3
3) x² + 2x - 3 = 0
D = b² -4ac = 4 - 4×(-3) = 26 = 4²
x1 = ( - 2 + 4) / 2 = 1
x2 = ( - 2 - 4) / 2 = - 3
4) x² + 3x -4 = 0
D = b²- 4ac = 9 - 4×(-4) = 25 = 5²
x1 = ( - 3 + 5) / 2 = 1
x2 = ( - 3 - 5) / 2 = - 4
5) x² - 5x + 4 = 0
D = b² - 4ac = 25 - 4×4 = 9 = 3²
x1 =( 5 + 3) / 2 = 4
x2 = ( 5 - 3) / 2 = 1
6) x² - 4x + 3 = 0
D = b - 4ac = 16 - 4×3 = 4 = 2²
x1 = ( 4 + 2) / 2 = 3
x2 = ( 4 - 2) / 2 = 1
7) 2x² + x - 3x - 4 = 0
2x² - 2x - 4 = 0
x² - x - 2 = 0
D = b² - 4ac = 1 - 4×(-2) = 9 = 3²
x1 = ( 1 + 3) / 2 = 2
x2 = ( 1 - 3) / 2 = - 1
8) 2x² - 3x - 4x + 3 = 0
2x² - 7x + 3 = 0
D = b²- 4ac = 49 - 8×3 = 25 = 5²
x1 = ( 7 + 5) / 4 = 3
x2 = ( 7 - 5)/ 4 = 0,5