В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
dawka09
dawka09
20.12.2021 16:03 •  Алгебра

Спримерами! найдите область определения: ..фото ниже↓

Показать ответ
Ответ:
Eldar1001
Eldar1001
31.10.2022 02:34
V=(40-X)(64-X)X - функция.
найти максимум, х∈(0, 40).
найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х
она равна 3х²-208х+2560
найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние             3х²-208х+2560=0
1)  х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3=
=(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3=
=(104+8·7)/3=160/3

2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16
ОСТАЛОСЬ по достаточному условию экстремума убедиться, что  х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)

вот как-то так...-))
0,0(0 оценок)
Ответ:
andrewgray
andrewgray
16.09.2020 02:07

Заметим ,что наименьшие значения  функций:

2^(x-3) +4>4

5*|tg(x)|+3*|ctg(x)|>=2√15      (из соображений  полного квадрата  и положительности каждого из членов |tg(x)|*|ctg(x)|=1)

Рассмотрим случай когда : a<-2√15

В этом случае  числитель будет  отрицателен при любом  x:

a-(2^(x-3) +4)<0

Знаменатель  же ,будет положителен не всегда, тк  при  каком нибудь x обязательно  найдется значение    5*|tg(x)|+3*|ctg(x)|>a ,тк  оно  имеет область значений от 2√15  до бесконечности) .  То есть в зависимости от x, может быть как и положителен так и отрицателен. Вывод: при a<-2√15  будут существовать решения неравенства.

Рассмотрим случай когда: a>4

Тут  ситуация иная:

Знаменатель тут  всегда положителен,а вот  числитель не  всегда отрицателен,то есть решения так же будут существовать .

Наконец рассмотрим случай когда:

     -2√15<=a<=4

В  этом случае числитель всегда  отрицателен (при  любом x), а  знаменатель же  наоборот будет неотрицателен. Таким образом только на  этом интервале неравенство не будет иметь решения не для какого x. Тк  отношение числителя и знаменателя всегда будет отрицательным. P.S  Не у  кого тут нет вопросов  почему  строгое неравенство  для -2√15(знаменателю быть равным нулю не запрещается,тк наша цель отсутствие решений). Почему  же строгое и для  4,  а дело  все в том ,что: 2^(x-3) +4≠4  , а только стремится к нему при  стремлении x к бесконечности,поэтому опасаться за равенство нулю  числителя не  стоит.

Таким образом

ответ:  a∈[-2√15;4]

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота