Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
mariialebedeva
21.05.2021 04:03 •
Алгебра
Спростити вираз 18xy + 6x - 24y -8 і обчислити його значення, якщо:
х=1 2/3
y = 0, 45
Показать ответ
Ответ:
Torior
06.05.2022 06:24
Y = 2x - x^2
y = -3
Yкас. = y(x0) + y'(x0)(x-x0)
Найдем x0.
2x-x^2 = -3
-x^2 + 2x + 3 = 0
x^2 - 2x - 3 = 0
a = 1, b= -2, c = -3
D=b^2 - 4ac = 4 + 4*1*3 = 4 + 12 = 16 = 4^2
x1 = (-b + корень из D) / 2a = (2 + 4)/2 = 3
x2 = (-b - корень из D) / 2a = (2 - 4)/2 = -1
Находим производную:
y' = (2x - x^2)' = 2 - 2x
Составляем уравнения касательных:
Yкас. = y(x0) + y'(x0)(x-x0)
y(x1) = 2*3 - 9 = 6-9 = -3
y(x2) = -2 -1 = -3
y'(x1) = 2 - 2*3 = 2 - 6 = -4
y'(x2) = 2+2 = 4
Yк1 = -3 + -4*(x-3) = -3 - 4x + 12 = 9 - 3x
Yк2 = -3 + 4*(x+1) = -3 + 4x + 4 = 1 + 4x
0,0
(0 оценок)
Ответ:
Bagdan112
06.05.2022 06:24
Y = 2x - x^2
y = -3
Yкас. = y(x0) + y'(x0)(x-x0)
Найдем x0.
2x-x^2 = -3
-x^2 + 2x + 3 = 0
x^2 - 2x - 3 = 0
a = 1, b= -2, c = -3
D=b^2 - 4ac = 4 + 4*1*3 = 4 + 12 = 16 = 4^2
x1 = (-b + корень из D) / 2a = (2 + 4)/2 = 3
x2 = (-b - корень из D) / 2a = (2 - 4)/2 = -1
Находим производную:
y' = (2x - x^2)' = 2 - 2x
Составляем уравнения касательных:
Yкас. = y(x0) + y'(x0)(x-x0)
y(x1) = 2*3 - 9 = 6-9 = -3
y(x2) = -2 -1 = -3
y'(x1) = 2 - 2*3 = 2 - 6 = -4
y'(x2) = 2+2 = 4
Yк1 = -3 + -4*(x-3) = -3 - 4x + 12 = 9 - 3x
Yк2 = -3 + 4*(x+1) = -3 + 4x + 4 = 1 + 4x
0,0
(0 оценок)
Популярные вопросы: Алгебра
julia4171822
28.11.2021 10:01
Напишити подробное решение 84/5log5^7...
Olga6491
28.11.2021 10:01
Сухая цементная смесь состоит из цемента и песка ,взятых в отношении 1: 3. сколько килограммов цемента необходимо взять, чтобы получить 2 тонна цементной смеси?...
BadKsu
28.11.2021 10:01
Запишите пропорцию ,крайние члены которой равны 128 и 2,а один из средних членов равен 64.найдите неизвестный средний член составленной пропорции...
Werbast
28.11.2021 10:01
7розв язати рівняння: а) (8х+3)²-6(3х-1)(3х+1)-5(2х+1)(х-4)=3 б) (3х+1)²-100=0...
кукла221
28.11.2021 10:01
1.поезд за 2ч 30 минут проехал расстояние,меньше 200 км.оцените скорость движения поезда. 2.периметр квадрата больше 16 см,но меньше 20 см.оцените длину стороны квадрата....
pourkur1111oz10kt
28.11.2021 10:01
Объем бассейна 1125м в кубе две трубы заполняют бассейн за 2 часа. при этом первая труба может заполнить бассейн за 3 часа,работая самостоятельно. сколько литров в час пропускает...
Алісія
13.10.2022 02:34
Всентябре цена товара снизилась на 30%, а в октябре повысилась на 20%. снизилась или возрасла и на сколько процентов цена товара за 2 месяца...
otlichnik41
13.10.2022 02:34
(x-3)(13-4x-x^2) (x-3)(x^2+11x-4) решить неравенство...
Aidanа1307
13.10.2022 02:34
Найдите значение выражения: (а^5+2а^4-а^3): (-а^3)+(а-1)(а+1) при а=2...
мединалуна
13.10.2022 02:34
Найди следующие два члена прогрессии, если b1=7 и b2=21....
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
y = -3
Yкас. = y(x0) + y'(x0)(x-x0)
Найдем x0.
2x-x^2 = -3
-x^2 + 2x + 3 = 0
x^2 - 2x - 3 = 0
a = 1, b= -2, c = -3
D=b^2 - 4ac = 4 + 4*1*3 = 4 + 12 = 16 = 4^2
x1 = (-b + корень из D) / 2a = (2 + 4)/2 = 3
x2 = (-b - корень из D) / 2a = (2 - 4)/2 = -1
Находим производную:
y' = (2x - x^2)' = 2 - 2x
Составляем уравнения касательных:
Yкас. = y(x0) + y'(x0)(x-x0)
y(x1) = 2*3 - 9 = 6-9 = -3
y(x2) = -2 -1 = -3
y'(x1) = 2 - 2*3 = 2 - 6 = -4
y'(x2) = 2+2 = 4
Yк1 = -3 + -4*(x-3) = -3 - 4x + 12 = 9 - 3x
Yк2 = -3 + 4*(x+1) = -3 + 4x + 4 = 1 + 4x
y = -3
Yкас. = y(x0) + y'(x0)(x-x0)
Найдем x0.
2x-x^2 = -3
-x^2 + 2x + 3 = 0
x^2 - 2x - 3 = 0
a = 1, b= -2, c = -3
D=b^2 - 4ac = 4 + 4*1*3 = 4 + 12 = 16 = 4^2
x1 = (-b + корень из D) / 2a = (2 + 4)/2 = 3
x2 = (-b - корень из D) / 2a = (2 - 4)/2 = -1
Находим производную:
y' = (2x - x^2)' = 2 - 2x
Составляем уравнения касательных:
Yкас. = y(x0) + y'(x0)(x-x0)
y(x1) = 2*3 - 9 = 6-9 = -3
y(x2) = -2 -1 = -3
y'(x1) = 2 - 2*3 = 2 - 6 = -4
y'(x2) = 2+2 = 4
Yк1 = -3 + -4*(x-3) = -3 - 4x + 12 = 9 - 3x
Yк2 = -3 + 4*(x+1) = -3 + 4x + 4 = 1 + 4x