В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
zagyramasa
zagyramasa
12.09.2020 08:26 •  Алгебра

Спростити вираз a+|a+1|, якщо a<1

Показать ответ
Ответ:
нан08
нан08
28.01.2020 06:29
1)-2x+1=-x-6
-2x+x=-6-1
-x=-7
x=7

2)3/8x=24;
x=24:3/8
x=24×8/3
x=64

2(0,6x+1,85)=1,3x+0,7
1,2x+3,7=1,3x+0,7
1,2x-1,3x=0,7-3,7
-0,1x=-3
x=30

Найдите значение числового выражения:
(2/7+3/14)(7,5-13,5)=

1) 2/7×7,5-2/7×13,5+3/14×7,5-3/14×13,5=

2) 7,5=7 5/10=7 1/2=(1+7×2)/2=15/2

3)2/7×15/2=15/2

4)13,5=13 1/2=(1+13×2)/2=27/2

5)2/7×27/2=27/7

6)3/14×7,5=3/14×15/2=45/28

7)3/14×27/2=81/28
8)15/2-27/7+45/28-81/28=
105/14-54/14-36/28=51/14-36/28=102/28-36/28=66/28=33/14=2 5/14

Упростите выражение:
1)5a-3b-8a+12b
-3a+9b

2)16c+(3c-2)-(5c+7)
16c+3c-2-5c-7=14c-9

3)7-3(6y-4)
7-18y+12=-18y+19
0,0(0 оценок)
Ответ:
SonyaCooling
SonyaCooling
08.08.2022 08:20
-a4b+a4c+a3b2+2a3bc-2a3c2-2a2b3-a2b2c-a2bc2+a2c3+ab4+2ab3c-ab2c2+2abc3-ac4-b4c+b3c2-2b2c3+bc4 ————————————————————————————————————————————————————————————————————————————————————————————— (a-b)•(b-c)•(c-a) Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "c2"   was replaced by   "c^2".  2 more similar replacement(s).

Step by step solution :Skip Ad
Step  1  : c2 Simplify ————— c - a Equation at the end of step  1  : (a2) (b2) c2 ((—————•(a-c))+(—————•(b-a)))+(———•(c-b)) (a-b) (b-c) c-a Step  2  :Equation at the end of step  2  : (a2) (b2) c2•(c-b) ((—————•(a-c))+(—————•(b-a)))+———————— (a-b) (b-c) c-a Step  3  : b2 Simplify ————— b - c Equation at the end of step  3  : (a2) b2 c2•(c-b) ((—————•(a-c))+(———•(b-a)))+———————— (a-b) b-c c-a Step  4  :Equation at the end of step  4  : (a2) b2•(b-a) c2•(c-b) ((—————•(a-c))+————————)+———————— (a-b) b-c c-a Step  5  : a2 Simplify ————— a - b Equation at the end of step  5  : a2 b2•(b-a) c2•(c-b) ((———•(a-c))+————————)+———————— a-b b-c c-a Step  6  :Equation at the end of step  6  : a2•(a-c) b2•(b-a) c2•(c-b) (————————+————————)+———————— a-b b-c c-a Step  7  :Calculating the Least Common Multiple :

 7.1    Find the Least Common Multiple 

      The left denominator is :       a-b 

      The right denominator is :       b-c 

                  Number of times each Algebraic Factor
            appears in the factorization of:    Algebraic    
    Factor     Left 
 Denominator  Right 
 Denominator  L.C.M = Max 
 {Left,Right}  a-b 101 b-c 011


      Least Common Multiple: 
      (a-b) • (b-c) 

Calculating Multipliers :

 7.2    Calculate multipliers for the two fractions 

    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = b-c

   Right_M = L.C.M / R_Deno = a-b

Making Equivalent Fractions :

 7.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well. 

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

L. Mult. • L. Num. a2 • (a-c) • (b-c) —————————————————— = —————————————————— L.C.M (a-b) • (b-c) R. Mult. • R. Num. b2 • (b-a) • (a-b) —————————————————— = —————————————————— L.C.M (a-b) • (b-c) Adding fractions that have a common denominator :

 7.4       Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a2 • (a-c) • (b-c) + b2 • (b-a) • (a-b) a3b - a3c - a2b2 - a2bc + a2c2 + 2ab3 - b4 ——————————————————————————————————————— = —————————————————————————————————————————— (a-b) • (b-c) (a - b) • (b - c) Equation at the end of step  7  : (a3b - a3c - a2b2 - a2bc + a2c2 + 2ab3 - b4) c2 • (c - b) ———————————————————————————————————————————— + ———————————— (a - b) • (b - c) c - a Step  8  :Calculating the Least Common Multiple :

 8.1    Find the Least Common Multiple 

      The left denominator is :       (a-b) • (b-c) 

      The right denominator is :       c-a 

                  Number of times each Algebraic Factor
            appears in the factorization of:    Algebraic    
    Factor     Left 
 Denominator  Right 
 Denominator  L.C.M = Max 
 {Left,Right}  a-b 101 b-c 101 c-a 011


      Least Common Multiple: 
      (a-b) • (b-c) • (c-a) 

Calculating Multipliers :

 8.2    Calculate multipliers for the two fractions 

    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = c-a

   Right_M = L.C.M / R_Deno = (a-b)•(b-c)

Making Equivalent Fractions :

 8.3      Rewrite the two fractions into equivalent fractions

L. Mult. • L. Num. (a3b-a3c-a2b2-a2bc+a2c2+2ab3-b4) • (c-a) —————————————————— = ———————————————————————————————————————— L.C.M (a-b) • (b-c) • (c-a) R. Mult. • R. Num. c2 • (c-b) • (a-b) • (b-c) —————————————————— = —————————————————————————— L.C.M (a-b) • (b-c) • (c-a) Adding fractions that have a common denominator :

 8.4       Adding up the two equivalent fractions 

(a3b-a3c-a2b2-a2bc+a2c2+2ab3-b4) • (c-a) + c2 • (c-b) • (a-b) • (b-c) -a4b+a4c+a3b2+2a3bc-2a3c2-2a2b3-a2b2c-a2bc2+a2c3+ab4+2ab3c-ab2c2+2abc3-ac4-b4c+b3c2-2b2c3+bc4 ————————————————————————————————————————————————————————————————————— = ————————————————————————————————————————————————————————————————————————————————————————————— (a-b) • (b-c) • (c-a) (a-b) • (b-c) • (c-a) Final result : -a4b+a4c+a3b2+2a3bc-2a3c2-2a2b3-a2b2c-a2bc2+a2c3+ab4+2ab3c-ab2c2+2abc3-ac4-b4c+b3c2-2b2c3+bc4 ————————————————————————————————————————————————————————————————————————————————————————————— (a-b)•(b-c)•(c-a)


Processing ends successfully

Latest drills solved(-4,7)to(94,-55)(5)/(7)+(4)/(y)=38(x+8/9)-9a2/(a-b)(a-c)+b2/(b-c)(b-a)+c2/(c-a)(c-b) 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота