1)Рассм. прямоугольный треуг-к АВD, образованный одной из диагоналей и 2 сторонами прямоугольника(а - первая сторона, b - вторая сторона). Тогда по теореме пифагора квадрат гипотенузы равен сумме квадратов катетов:
45^2 = a^2 + b^2
Площадь прямоугольника - это произведение сторон а и b:
1)Рассм. прямоугольный треуг-к АВD, образованный одной из диагоналей и 2 сторонами прямоугольника(а - первая сторона, b - вторая сторона). Тогда по теореме пифагора квадрат гипотенузы равен сумме квадратов катетов:
45^2 = a^2 + b^2
Площадь прямоугольника - это произведение сторон а и b:
a * b = 972
a^2 + b^2 можно представить как полный квадрат:
(a + b)^2 - 2ab = a^2 + b^2 (a^2 + b^2 + 2ab) - 2ab = a^2 + b^2
2)Теперь вместо ab подставляем 972, вместо a^2 + b^2 - 45^2 (или 2025)
(a + b)^2 - 1944 = 2025
(a + b)^2 = 3989
a + b = кв. корень 3969 = 63
3)Теперь решим систему нера-в:
a + b = 63
a * b = 972, выражаем а через 1-ое урав-е и подставляем во второе:
a = 63 - b
(63 - b) * b = 972
a = 63 - b
63b - b^2 - 972 = 0
a = 63 - b
(b - 27) * (b - 36) = 0 , (следовательно 27 и 36 - корни кв. урав-я),
а = 36 a = 27
b = 27, b = 36, следовательно
27 см и 36 см - длины сторон прямоугольника.
ответ: 27 и 36
(2x²-7x+3)² ≤ (x² -9)²
(2x²-7x+3)² - (x²-9)² ≤ 0
(2x²-7x+3-x²+9)(2x²-7x+3+x²-9) ≤0
(x²-7x+12)(3x²-7x-6)≤0
Разложим на множители:
x²-7x+12=0
D=49-48=1
x₁=7-1=3
2
x₂=7+1=4
2
x²-7x+12=(x-3)(x-4)
3x²-7x-6=0
D=49+4*3*6=49+72=121
x₁=7-11=-4/6=-2/3
6
x₂=7+11= 3
6
3x²-7x-6=3(x+2/3)(x-3)
3(x-3)(x-4)(x+2/3)(x-3)≤0
(x-3)(x-3)(x-4)(x+2/3)≤0
x=3 x=4 x=-2/3
+ - - +
-2/3 3 4
x∈[-2/3; 3]U[3; 4]
х=0; 1; 2; 3; 4
0+1+2+3+4=10
ответ: 10.