1. чтобы найти точки пересечения с осью абсцисс, надо положить у=0,так как на оси абсцисс все точки имеют вторую координату (ординату), равную нулю.Получим -3х+12=0 -3х=-12 3х=12 х=4 Точка будет (4,0). Прямая у=-3х+12 проходит через две точки: (4,0) и (3,3). Нарисуй сам. 2. Функция на промежутке не является возрастающей.Она на этом промежутке как раз убывает.Это правая ветвь гиперболы,расположенная в 1 координатной четверти. У вот функция как раз возрастает на этом интервале (это правая ветвь квадратичной параболы).
-3х+12=0
-3х=-12
3х=12
х=4
Точка будет (4,0).
Прямая у=-3х+12 проходит через две точки: (4,0) и (3,3). Нарисуй сам.
2. Функция на промежутке не является возрастающей.Она на этом промежутке как раз убывает.Это правая ветвь гиперболы,расположенная в 1 координатной четверти. У вот функция как раз возрастает на этом интервале (это правая ветвь квадратичной параболы).
5 см, 12 см и 13 см.
Объяснение:
Пусть а - меньший катет, b - больший катет, c - гипотенуза.
Составим систему уравнений:
а = с - 8 (1)
b - a = 7 (2)
Сложим почленно уравнения (1) и (2):
a + b - a = c - 8 + 7
b = c - 1 (3)
Согласно теореме Пифагора:
а² + b² = c² (4)
Подставим в (4) вместо а и b их значения из (1) и (3):
(с - 8)² + (с-1)² = с²
с² - 16с +64 +с² - 2с + 1 = с²
с² - 18с + 65 = 0
с₁,₂ = 9±√(9²-65) = 9±√16 = 9±4
с₁ = 9+4 = 13 см
с₂ = 9-4 = 5 см - не подходит, т.к. в таком случае катет будет величиной отрицательной.
Таким образом, гипотенуза с = 13 см.
Из (1) находим меньший катет а:
а = с - 8 = 13 - 8 = 5 см
Из (3) находим больший катет b:
b = с - 1 = 13 - 1 = 12 см
ПРОВЕРКА
5²+12² = 25+144=169
13² = 169
Сумма квадратов катетов равна квадрату гипотенузы - значит, задача решена верно.
ответ: стороны данного прямоугольного треугольника равны 5 см, 12 см и 13 см.