Отмечаем на координатной прямой точки, в которых знаменатель и числитель обращаются в ноль. И выкалываем те, что из знаменателя. Мы получили 5 интервала. Перед дробью знак положительный и все множители имею пол. знак при х, поэтому на правом интервале ставим "плюс", далее чередуем знак через каждую отмеченную точку (все множители в нч степени - 1). Нас интересует, когда больше или равно, поэтому выбираем интервалы с плюсом, учитывая границы.
ответ: x ∈ (-∞;-3) ∪ [-2;2] ∪ (3;+∞).
В решении использовалась формула сокращённого умножения: a²-b²=(a-b)(a+b).
Условия определения логарифмической функции: 1) - логарифмируемое выражение должно быть положительным, 2) - знаменатель дроби не должен быть равен 0.
1) Чтобы логарифмируемое выражение было положительным, надо, чтобы числитель и знаменатель были одновременно или положительными или отрицательными: 2х + 1 >0 x > -1/2 x - 1 > 0 x > 1 Первое решение х > 1
2х + 1 <0 x < -1/2 x - 1< 0 x < 1 Второе решение х < - 1/2
2) Чтобы знаменатель дроби не был равен 0: х - 1 ≠ 0 х ≠ 1.
Решим неравенство методом интервалов.
Отмечаем на координатной прямой точки, в которых знаменатель и числитель обращаются в ноль. И выкалываем те, что из знаменателя. Мы получили 5 интервала. Перед дробью знак положительный и все множители имею пол. знак при х, поэтому на правом интервале ставим "плюс", далее чередуем знак через каждую отмеченную точку (все множители в нч степени - 1). Нас интересует, когда больше или равно, поэтому выбираем интервалы с плюсом, учитывая границы.
ответ: x ∈ (-∞;-3) ∪ [-2;2] ∪ (3;+∞).
В решении использовалась формула сокращённого умножения: a²-b²=(a-b)(a+b).
1) - логарифмируемое выражение должно быть положительным,
2) - знаменатель дроби не должен быть равен 0.
1) Чтобы логарифмируемое выражение было положительным, надо, чтобы числитель и знаменатель были одновременно или положительными или отрицательными:
2х + 1 >0 x > -1/2
x - 1 > 0 x > 1 Первое решение х > 1
2х + 1 <0 x < -1/2
x - 1< 0 x < 1 Второе решение х < - 1/2
2) Чтобы знаменатель дроби не был равен 0: х - 1 ≠ 0 х ≠ 1.
ответ: -1/2 > x > 1