Сравните с единицей следующие степени
(2:5)в степени 2:3
(5:3)в степени 3:4
(1:2) в степени - 6:7
(3:2) в степени - 4:5
(0.21)в степени 0.1
(3:4) в степени 2:5
(7:4) в степени 1:4
(1:6) в степени - 5:6
(7:3) в степени - 3:4
(0.31) в степени 0.2
Вычислите
2 в степени 2-3корень3 *8 корень 3
4 в степени 1-2 корень из 3*16 корень 3
Найдите значение выражения
8 в степени 2:3-16 в степени 1:4+9 в степени 1:2
125 в степени 2:3+16 в степени 1:2+343 в степени 1:2
36 в степени 3:2+64 в степени 2:3-625 в степени 1:2
0.008 в степени - 2:3 +0.064 в степени - 1:3-0.0625 в степени - 3:4*9
104log3 корень в степени 8 из 3
log в степени 2 корень 7 из 49
1.
то что показано как решать неэффективно
x² + y² + 2y - 9 = 0
3x - y - 1 = 0
y² + 2y + 1 + x² - 10 = 0 (1)
y = 3x - 1 (2)
(y + 1)² + x² = 10 и подставляем из (2)
(3x - 1 + 1)² + x² = 10
9x² + x² = 10
x² = 1
x = ± 1
x = 1 y = 3x - 1 = 2
x = -1 y=3x - 1 = -4
ответ (1, 2) (-1, -4)
2)
x² - 4x - 5 < 0
3x - 9 > 0
разложим на множители x² - 4x - 5 = (x - 5)(x + 1)
D = 16 + 20 = 36
x12 = (4 +- 6)/2 = 5 -1
(x + 1)(x - 5) < 0
3(x - 3) > 0
Применяем метод интервалов
(-1) (5)
(3)
x ∈ (-1, 5) ∩ (3, +∞)
ответ x ∈ (3, 5)
3)
подкоренные выражения ≥ 0
x - 3 ≥ 0
x² -7x + 6 ≥ 0
раскладываем второе
D = 49 - 24 = 25
x12 = (7 +- 5)/2 = 6 1
x² -7x + 6 = (x - 1)(x - 6)
Применяем метод интервалов
[1] [6]
[3]
x ∈ {(-∞, 1] U [6, +∞)) ∩ (3, +∞)
ответ x ∈ [6, +∞)
5x=0+8.5 8x-6x=1.5+7.5
5x=8.5 2x=9
x=8.5/5 x=9/2
x=1,7 x=4.5
в)4x-(9x-6)=46 г)(x-2.5)*(5+x)=0
4x-9x+6=46 x-2.5*5+x=0
-5x=46-6 2x=12.5
x=40/-5 x=12.5/2
x=-8 x=6.25
д) 2х/5=(х-3)/2 е) 7х-(х+3)=3(2х-1)
2x-x=-3/2*5 нет корней
x=-7.5
№2 х*2+8=6х
2х-6х=-8
-4х=-8
х=-8/-4
х=2
№3
1) х+2х+х+80=3080
4х+80=3080
4х=3080-80
х=3000/4
х=750 ( уч) в первой школе
2)750+80=830 (уч) во второй школе
3)750*2=1500 ( уч) в третьей школе
№4 х+25=2х-16
х-2х=-16-25
х=41 (т) в первом магазине первоначально
41*2=82 (т) во втором магазине первончально