Пусть Х - число участников должно было пойти, тогда (Х+3) - число участников пошло на самом деле 340/Х - расход на 1 участника должно было 380/(Х+3) - расход на 1 участника был на самом деле Известно , что расход на 1 участника ниже на самом деле, чем предполагалось Составим уравнение: 340/Х - 380/(Х+3)=1 340(Х+3) - 380х = х(Х+3) 340х + 1020 - 380х =х^2 +3х - х^2 -43х +1020=0 | *(-1) Х^2 +43х-1020=0 Д=\| 5929=77 Х1= 17 участников должно было пойти Х2= -60 - не подходит , т и отрицательное кол-во Х+3=17+3=20 участников было ответ: 20 участников было
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
тогда (Х+3) - число участников пошло на самом деле
340/Х - расход на 1 участника должно было
380/(Х+3) - расход на 1 участника был на самом деле
Известно , что расход на 1 участника ниже на самом деле, чем предполагалось
Составим уравнение:
340/Х - 380/(Х+3)=1
340(Х+3) - 380х = х(Х+3)
340х + 1020 - 380х =х^2 +3х
- х^2 -43х +1020=0 | *(-1)
Х^2 +43х-1020=0
Д=\| 5929=77
Х1= 17 участников должно было пойти
Х2= -60 - не подходит , т и отрицательное кол-во
Х+3=17+3=20 участников было
ответ: 20 участников было
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.