Сравните значения примеров (a – 2)^2 і a(a – 4) при значении a, что равняется: 1) 6; 2) –3; 3) 2. можна ли за результатами выполненых сравнений утверждать, что при любом значении a значение первого примера больше за соответствующее значение второго примера? доведите, что при любом значении a значение первого примера больше за соответствующее значение второго примера.
а=6: (а-2)²=(6-2)²=4²=16 , а·(а-4)=6·(6-4)=6·2=12 ⇒ 16>12
a= -3: (a-2)²=(-3-2)²=(-5)²=25 , a·(a-4)= -3·(-3-4)= -3·(-7)=21 ⇒ 25>21
a=2: (a-2)²=(2-2)²=0 , a·(a-4)=2·(2-4)=2·(-2)= -4 ⇒ 0> -4
Докажем, что при любом значении а выражение (а-2)² больше, чем значение выражения а·(а-4) .
Раскроем скобки в обоих выражениях: (a-2)²=a²-4a+4 ; a(a-4)=a²-4a .
Мы видим, что 1-ое выражение на 4 единицы больше, чем 2-ое выражение при любых значениях переменной а, то есть (а-2)²>а(а-4) при а∈(-∞,+∞) .