Прощу прощения за задержку. Разложить на множители, это означает упростить данное выражение. В данном выражении, мы можем увидеть общие множители abc . Можно конечно разложить так:
abc(27a²bc⁴-36ab³c²) - но как можно заметить, выражение в скобках можно упростить тоже. Поэтому не имеет смысла несколько раз упрощать и упрощать. Поступаем так: Находим минимальную степень а, b и с. И получаем, что можно упростить так:
Можем так же заметить что 27 и 36 делятся на 9. А значит имеем право упростить еще :
Это и будет окончательный ответ. Мы разложили на множители, и если перемножить скобки, получим начальное выражение :)
Если что то не понятно, задайте вопрос в комментарии :)
Для начала, можно посмотреть несколько последовательных степеней двойки: 1 2 2 4 3 8 4 16 5 32 6 64 7 128 8 256 9 512 Как видим, последняя цифра меняется так: 2, 4, 8, 6. А далее эта последовательность повторяется. То есть имеем повторяющуюся последовательность из четырёх цифр. Чтобы понять, на какую из этих цифр заканчивается 2^2015, мы разделим 2015 на 4. Получим 503 и остаток 3.
Чтобы далее было понятно, рассмотрим варианты: 1) если бы разделилось нацело (как, например, четвёртая степень), то число бы оканчивалось на шесть (смотри выше посчитанные степени) 2) если был бы остаток 1 (как, например, для пятой степени), то число бы оканчивалось на 2 3) если был бы остаток 2 (как, например, для шестой степени), то число бы оканчивалось на 4 4) а если остаток 3 (как, например, для седьмой степени), то число будет оканчиваться на 8
Соответственно, последняя цифра числа 2^2015 будет восемь.
Разложить на множители, это означает упростить данное выражение.
В данном выражении, мы можем увидеть общие множители abc .
Можно конечно разложить так:
abc(27a²bc⁴-36ab³c²) - но как можно заметить, выражение в скобках можно упростить тоже.
Поэтому не имеет смысла несколько раз упрощать и упрощать.
Поступаем так:
Находим минимальную степень а, b и с.
И получаем, что можно упростить так:
Можем так же заметить что 27 и 36 делятся на 9.
А значит имеем право упростить еще :
Это и будет окончательный ответ. Мы разложили на множители, и если перемножить скобки, получим начальное выражение :)
Если что то не понятно, задайте вопрос в комментарии :)
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
Как видим, последняя цифра меняется так: 2, 4, 8, 6.
А далее эта последовательность повторяется. То есть имеем повторяющуюся последовательность из четырёх цифр.
Чтобы понять, на какую из этих цифр заканчивается 2^2015, мы разделим 2015 на 4. Получим 503 и остаток 3.
Чтобы далее было понятно, рассмотрим варианты:
1) если бы разделилось нацело (как, например, четвёртая степень), то число бы оканчивалось на шесть (смотри выше посчитанные степени)
2) если был бы остаток 1 (как, например, для пятой степени), то число бы оканчивалось на 2
3) если был бы остаток 2 (как, например, для шестой степени), то число бы оканчивалось на 4
4) а если остаток 3 (как, например, для седьмой степени), то число будет оканчиваться на 8
Соответственно, последняя цифра числа 2^2015 будет восемь.