А теперь делим число на три части пропорционально числам 1; 5; 4 1 + 5 + 4 = 10 частей в числе 150. 150 : 10 · 1 = 15 - первое число, обратно пропорциональное 2. 150 : 10 · 5 = 75 - второе число, обратно пропорциональное 2/5. 150 : 10 · 4 = 60 - третье число, обратно пропорциональное 1/2. ответ: 15; 75; 60
Уравнение превратится изz2+x2+y2=2015z2+x2+y2=2015
вz2+x2+y2−2015=0z2+x2+y2−2015=0
Это уравнение видаa*x^2 + b*x + c = 0
Квадратное уравнение можно решитьс дискриминанта.Корни квадратного уравнения:x1=D−−√−b2ax1=D−b2a
x2=−D−−√−b2ax2=−D−b2a
где D = b^2 - 4*a*c - это дискриминант.Т.к.a=1a=1
b=0b=0
c=y2+z2−2015c=y2+z2−2015
, тоD = b^2 - 4 * a * c =
(0)^2 - 4 * (1) * (-2015 + y^2 + z^2) = 8060 - 4*y^2 - 4*z^2
Уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
илиx1=12−4y2−4z2+8060−−−−−−−−−−−−−−−√x1=12−4y2−4z2+8060
x2=−12−4y2−4z2+8060
2 + 3 + 5 = 10 частей в числе 150
150 : 10 · 2 = 30 - первое число, пропорциональное 2.
150 : 10 · 3 = 45 - второе число, пропорциональное 3.
150 : 10 · 5 = 75 - третье число, пропорциональное 5.
ответ: 30; 45; 75.
2. Обратно пропорционально числам 2; 2/5; 1/2.
Найдём числа, обратные данным:
Их отношения таковы:
А теперь делим число на три части пропорционально числам 1; 5; 4
1 + 5 + 4 = 10 частей в числе 150.
150 : 10 · 1 = 15 - первое число, обратно пропорциональное 2.
150 : 10 · 5 = 75 - второе число, обратно пропорциональное 2/5.
150 : 10 · 4 = 60 - третье число, обратно пропорциональное 1/2.
ответ: 15; 75; 60