Мы знаем, что помимо положительных чисел, меньше нуля существуют еще и отрицательные числа.
Поэтому, при сложении отрицательного и положительного числа, всегда из положительного числа вычитается отрицательное, то есть, наглядно первый пример можно преобразовать как:
, тогда становится понятнее логика сложения отрицательного с положительным числом.
Второй пример аналогичен первому: если из положительного числа, то есть 3, вычесть отрицательное число, то есть 5, получим как раз -2: .
Пойдем ниже, в третьем примере из положительного числа вычитают большее отрицательное число. Поэтому в таких случаях запись можно преобразовать как: , то есть, мы из отрицательного числа вычитаем положительное число и заносим эту операцию над двумя числами в скобки со знаком "минус".
Четвертый и пятый пример аналогичны первому, когда мы можем представить запись в виде:
То есть, если число со знаком "+" больше числа со знаком "-", мы имеем право переписать запись в виде обычного вычитания из большего числа меньшее, где получим положительное число в ответе.
Объяснение:
Мы знаем, что помимо положительных чисел, меньше нуля существуют еще и отрицательные числа.
Поэтому, при сложении отрицательного и положительного числа, всегда из положительного числа вычитается отрицательное, то есть, наглядно первый пример можно преобразовать как:
, тогда становится понятнее логика сложения отрицательного с положительным числом.
Второй пример аналогичен первому: если из положительного числа, то есть 3, вычесть отрицательное число, то есть 5, получим как раз -2: .
Пойдем ниже, в третьем примере из положительного числа вычитают большее отрицательное число. Поэтому в таких случаях запись можно преобразовать как: , то есть, мы из отрицательного числа вычитаем положительное число и заносим эту операцию над двумя числами в скобки со знаком "минус".
Четвертый и пятый пример аналогичны первому, когда мы можем представить запись в виде:
То есть, если число со знаком "+" больше числа со знаком "-", мы имеем право переписать запись в виде обычного вычитания из большего числа меньшее, где получим положительное число в ответе.
А 16 км В
> х км/ч ? (х + 9) км/ч <
1,5 ч = 90 мин = 90/60 = 3/2 ч
20 мин = 20/60 = 1/3 ч
Уравнение:
х · (3/2 + 1/3) + (х + 9) · 1/3 = 16
3/2х + 1/3х + 1/3х + 9/3 = 16
9/6х + 2/6х + 2/6х + 3 = 16
13/6х = 16 - 3
13/6х = 13
х = 13 : 13/6
х = 13/1 · 6/13
х = 6 (км/ч) - скорость пешехода
6 + 9 = 15 (км/ч) - скорость велосипедиста
ответ: 6 км/ч и 15 км/ч.
Проверка:
6 · (3/2 + 1/3) = 6 · 11/6 = 66/6 = 11 км - пройдёт пешеход за 1 ч 50 мин
15 · 1/3 = 15/3 = 5 км - проедет велосипедист за 20 мин
11 + 5 = 16 км - расстояние между пунктами