Сторона квадрата равна корень из его площади ( по формуле ) , значит его стороны по 4 см . Если расположить квадраты вдоль прямоугольника , чтобы они не касались друг друга , то длинна прямоугольника должна быть равна = 4+4+4 = 12 , а у нас длинна прямоугольника равна 10 . Если расположить квадраты в высоту ( по ширине прямоугольника ) , то ширина должна быть равна тоже 12 см ( чтобы квадраты не накладывались друг на друга ) , а у нас высота ( ширина ) = 4 см . Значит хотя бы 2 квадрата накладываются друг на друга :)
Моя логика такова:1) наименьшее число участников будет при наименьшем числе призеров при соблюдении нижнего предела процента призеров =1,7%;2) примем, что наименьшее число призеров =2 (из условий задачи - “призёрами” - множественное число);3) тогда, если 2 человека - 1,7% от общего числа участников, то таких участников должно быть не меньше 118 (из пропорции: 2=1,7; х=100).ответ: наименьшее возможное число школьников, участвовавших в олимпиаде, (1,7% от которого будет минимальным целым числом), составляет 118 человек.