Нарисуйте прямоугольник и квадрат. Тогда по условию можно сказать: возьмем за Х сторону квадрата. Тогда одна из сторон прямоугольника будет равна на 3 меньше, то есть Х-3, а другая сторона на 1 больше этой стороны, тогда Х-3+1, в итоге она равна Х-2. Стороны нашли. Теперь нам известно, что площадь квадрата больше площади прямоугольника на 15 (S1-площадь прямокгольника; S2площадь квадрата) S2>S1 S2+15=S1 (так как на 15 больше) У вадимка все стороны равны следовательно S2=x^2 (площадь равна икс в квадрате) Найдем площадь прямокгольника. В начале мы нашли его стороны...следовательно S1=(X-3)(X-2)
Теперь вернемся к нашему следствию S2+15=S1 (так как на 15 больше) И подставим площади. Получаем:
Стороны нашли.
Теперь нам известно, что площадь квадрата больше площади прямоугольника на 15 (S1-площадь прямокгольника; S2площадь квадрата)
S2>S1
S2+15=S1 (так как на 15 больше)
У вадимка все стороны равны следовательно S2=x^2 (площадь равна икс в квадрате)
Найдем площадь прямокгольника. В начале мы нашли его стороны...следовательно S1=(X-3)(X-2)
Теперь вернемся к нашему следствию S2+15=S1 (так как на 15 больше) И подставим площади.
Получаем:
Х^2+15=(х-3)(х-2)
Х^2+15=х^2-5х+6
15х=6-5х
20х=6
Х=3/10
Х=0,3
Объяснение:
5/4 и 3/2 = (3 * 2) /(2 * 2) = 6/4; б) 2/3 = (2 * 5)/(3 * 5) = 10/15 и 2/15 в) 7/15 = (7 * 3)/(15 * 3) = 21/45 и 5/9 = (5 * 5)/(9 * 5) = 25/45; г) 1/6 = (1 * 5)/(6 * 5) = 6/30 и 3/10 = (3 * 3)/(10 * 3) = 9/30; д) 1/3 = (1 * 6)/(3 * 6) = 6/18 и 5/18 е) 5/8 = (5 * 3)/(8 * 3) = 15/24 и 2/3 = (2 * 8)/(3 * 8) = 16/24; ж) 1/2 = (1 * 15)/(2 * 15) = 15/30 и 2/15 = (2 * 2)/(15 * 2) = 4/30; з) 5/12 = (5 * 5)/(12 * 5) = 25/60 и 7/15 = (7 * 2)/(15 * 2) = 14/30; и) 3/10 = (3 * 10)/(10 * 10) = 30/100 и 33/100.