Сторона основания правильной треугольной призмы равна 25 см, боковое ребро равно 6 см. найдите площадь сечения, проходящего через сторону верхнего основания и противолежащую вершину нижнего основания. !
Решение:
Примем скорость первого бегуна за х, тогда скорость второго бегуна х + 8.
Примем расстояние одного круга за S. Тогда первый бегун пробежал за час S - 1 км.
Тогда х = ( S - 1 ) / 1 = S - 1.
Второй бегун пробежал весь круг за 60 - 20 = 40 минут или 2/3 часа, значит его скорость равна:
х + 8 = S / ( 2/3 );
х = S / (2/3 ) - 8.
Теперь можем составить уравнение и найти расстояние 1 круга:
S - 1 = S / (2/3 ) - 8;
S - 1 = 3S/2 - 8;
2S - 2 = 3S - 16;
-2 + 16 = 3S - 2S;
S = 14 км.
Теперь, зная расстояние, можем найти скорость:
х = 14 - 1 = 13 км/ч.
ответ: Скорость первого бегуна 13 км/ч.
2) 3sin²x + 1 - 3cos² x = 3sin²x - 3cos² x + 1 = -3(cos² x - sin²x) + 1 = -3cos2x+ 1
3) -7/2 cos 2x - cos x + 3,5cos² x = -3,5 cos 2x + 3,5cos² x - cos x = -3,5 (cos 2x - cos² x) - cos x = -3,5 (2cos²x - 1 - cos² x) - cos x = -3,5 (cos²x - 1) - cos x = 3,5 (1 - cos²x) - cos x = 3,5 sin²x - cos x
1) 3/2cos2x + 1,5sin² x - 1 = 1,5cos2x + 1,5sin² x - 1 = 1,5(cos2x + sin² x) - 1 = 1,5(1 - 2sin²x + sin² x) - 1 = 1,5(1 - sin²x) - 1 = 1,5cos²x - 1.
2) 3sin²x + 1 - 3cos² x = 3sin²x - 3cos² x + 1 = -3(cos² x - sin²x) + 1 = -3cos2x+ 1
3) -7/2 cos 2x - cos x + 3,5cos² x = -3,5 cos 2x + 3,5cos² x - cos x = -3,5 (cos 2x - cos² x) - cos x = -3,5 (2cos²x - 1 - cos² x) - cos x = -3,5 (cos²x - 1) - cos x = 3,5 (1 - cos²x) - cos x = 3,5 sin²x - cos x
4) 5 - 20sin² a · cos²a ,если sin 2a=-1/5
5 - 20sin² a · cos²a = 5(1 - 4sin² a · cos²a) = 5(1 - sin2a) = 5(1 - (-1/5)) = 5 + 1 = 6.
11) найдите sin²a, если cos2a = 1/5
sin²a = (1 - cos2a)/2 = (1 - 1/5)/2 = (1 - 0,2)/2 = 0,8 / 2 = 0,4.
12) sin2x · tgx - sin²x + 1 = 2sinx · cosx · (sinx/cosx) - sin²x + 1 = 2sinx · sinx - sin²x + 1 = 2sin²x - sin²x + 1 = sin²x + 1