Задана функция f(x) = х² - 7х + 3. уравнение касательной имеет вид: у = f(a) + f'(a)·(x - a), где а - абсцисса точки на графике функции, к которой проведена касательная. f(a) = a² - 7a + 3 Производная функции f'(x) = 2x- 7 f'(a) = 2a - 7 Прямая, которой параллельна касательная задана уравнением у = -5х + 3 Эта прямая и касательная имеют одинаковые угловые коэффициенты, то есть f'(a) = - 5 2a - 7 = - 5 2a = 2 a = 1 Тогда f(a) = 1 - 7 + 3 = -3 и f'(a) = -5 подставим a, f(a) и f'(а) в уравнение касательной у = -3 -5(х - 1) y = -3 - 5x + 5 y = -5x + 2 - это и есть искомое уравнение касательной
(Х + 1) (x - 1) / (Х - 2)(x - 1) = (x² - 1) / (Х - 2)(x - 1) = (x² - 1) / (x² - 3x + 2)
2) (Х - 3) (x - 3)/ (Х + 3)(x - 3) = (x - 3)² / (x² - 9)
Х*(x + 3) / (Х - 3)(x + 3) = x*(x + 3) / (x² - 9)
3) (3 + Х)(x - 3) / (Х - 5)(x - 3) = (x² - 9) / (Х - 5)(x - 3) = (x² - 9) / (x² - 8x + 15)
Х*(x - 5) / (Х - 3)(x - 5) = Х*(x - 5) / (x² - 8x + 15)
4) (Х + 1)(x + 2) /x*(x² - 4) = (x² + 3x + 2) /x*(x² - 4)
x (4 + Х) / x( x² - 4)
f(x) = х² - 7х + 3.
уравнение касательной имеет вид:
у = f(a) + f'(a)·(x - a), где а - абсцисса точки на графике функции, к которой проведена касательная.
f(a) = a² - 7a + 3
Производная функции
f'(x) = 2x- 7
f'(a) = 2a - 7
Прямая, которой параллельна касательная задана уравнением
у = -5х + 3
Эта прямая и касательная имеют одинаковые угловые коэффициенты,
то есть f'(a) = - 5
2a - 7 = - 5
2a = 2
a = 1
Тогда f(a) = 1 - 7 + 3 = -3 и f'(a) = -5
подставим a, f(a) и f'(а) в уравнение касательной
у = -3 -5(х - 1)
y = -3 - 5x + 5
y = -5x + 2 - это и есть искомое уравнение касательной