План действий: 1) ищем производную 2) приравниваем к нулю, решаем получившееся уравнение 3) определяем, какие корни попадают в указанный промежуток 4) ищем значение функции на концах промежутка и в точке, 5) выбираем наибольший ответ Начали. 1)Производная = 6/Cos²x - 6 2) 6/Cos²x - 6 =0 6/Cos²x = 6 Cos²x = 1 а) Cos x = 1 б) Cos x = -1 x = 2πk, где k∈Z x =πn,где n∈Z 3) Из этих ответов в указанный промежуток попадает только х =0 4) у = 6tg 0 - 6·0 +6 = 6 y = 6tg (-π/4) - 6·π/4 +6= -6 -6π/4 +6 = -3π/2 5) у =6
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на 2:
2х+4у=12
3х-4у=8
Складываем уравнения:
2х+3х+4у-4у=12+8
5х=20
х=20/5
х=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
2х+4у=12
4у=12-2х
4у=12-2*4
4у=12-8
4у=4
у=1
Решение системы уравнений (4; 1)
2)5х+2у= -9
-5у+4х=6
Первое уравнение умножить на 2,5:
12,5х+5у= -22,5
-5у+4х=6
Складываем уравнения:
12,5х+4х+5у-5у= -22,5+6
16,5х= -16,5
х= -16,5/16,5
х= -1
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
1) ищем производную
2) приравниваем к нулю, решаем получившееся уравнение
3) определяем, какие корни попадают в указанный промежуток
4) ищем значение функции на концах промежутка и в точке,
5) выбираем наибольший ответ
Начали.
1)Производная = 6/Cos²x - 6
2) 6/Cos²x - 6 =0
6/Cos²x = 6
Cos²x = 1
а) Cos x = 1 б) Cos x = -1
x = 2πk, где k∈Z x =πn,где n∈Z
3) Из этих ответов в указанный промежуток попадает только х =0
4) у = 6tg 0 - 6·0 +6 = 6
y = 6tg (-π/4) - 6·π/4 +6= -6 -6π/4 +6 = -3π/2
5) у =6
1)Решение системы уравнений (4; 1);
2)Решение системы уравнений (-1; -2).
Объяснение:
Решить систему уравнений сложения:
1)х+2у=6
3х-4у=8
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на 2:
2х+4у=12
3х-4у=8
Складываем уравнения:
2х+3х+4у-4у=12+8
5х=20
х=20/5
х=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
2х+4у=12
4у=12-2х
4у=12-2*4
4у=12-8
4у=4
у=1
Решение системы уравнений (4; 1)
2)5х+2у= -9
-5у+4х=6
Первое уравнение умножить на 2,5:
12,5х+5у= -22,5
-5у+4х=6
Складываем уравнения:
12,5х+4х+5у-5у= -22,5+6
16,5х= -16,5
х= -16,5/16,5
х= -1
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
5х+2у= -9
2у= -9-5х
2у= -9-5*(-1)
2у= -9+5
2у= -4
у= -4/2
у= -2
Решение системы уравнений (-1; -2)