Тут нету ничего сложного, во-первых, запомни четыре главных правила, ведь именно они тебе и понять четна или нечетная, а может быть и ни нечетная и ни четная функция тебе попалась: cos(-x) = cosx sin(-x)= - sinx tg(-x) = - tgx ctg(-x) = - ctgx Теперь, например, возьмем функцию y = 2* sin4x f(x) = 2 * sin(4*(-x)) => f(x) = -2sin4x( т.е. функция поменяла свой знак, следовательно, она нечетная) Но также бывают случаи, когда sinx оказывается четным.Например, y=2*sin^2(x). т.к. синус в квадрате, то, когда мы будем выносить минус из-под него, знак не поменяется, т.к. квадрат С косинусом он всегда будет четным. Бывают случаи, когда функция является ни нечетн. и ни четн. Например: y=sin(x)-x^2 вроде бы функция должна быть не четная, т.к. синус без квадрата, но f(-x) = -sinx-x^2 т.е. функция никакая, т.к. синус поменял свой знак, а икс в квадрате нет.
Высоты треугольника пересекаются в одной точке.
Следовательно, достаточно найти уравнения двух любых высот треугольника и точку их пересечения, решив систему двух уравнений.
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.
Значит надо найти уравнение стороны треугольника и уравнение прямой, проходящей через противоположную вершину, перпендикулярно этой стороне.
Уравнение прямой АВ найдем по формуле:
(X-Xa)/(Xb-Xa)=(Y-Ya)/(Yb-Ya). Или
(X+4)/2=(Y-0)/-2 - каноническое уравнение =>
y=-x-2 - уравнение прямой с угловым коэффициентом k=-1.
Условие перпендикулярности прямых: k1=-1/k => k1=1.
Тогда уравнение перпендикуляра к стороне АВ из вершины С
найдем по формуле:
Y-Yс=k1(X-Xс) или Y-2=X-2 =>
y=х (1) - это уравнение перпендикуляра СС1.
Уравнение прямой АС:
(X-Xa)/(Xс-Xa)=(Y-Ya)/(Yс-Yа). Или
(X+4)/6=(Y-0)/2 - каноническое уравнение =>
y=(1/3)x+4/3 - уравнение прямой с угловым коэффициентом k=1/3.
Условие перпендикулярности прямых: k1=-1/k => k1 = -3.
Тогда уравнение перпендикуляра к стороне АС из вершины В
найдем по формуле:
Y-Yb=k1(X-Xb) или Y+2=-3(X+2) =>
y=-3х-8 (2)- это уравнение перпендикуляра BB1.
Точка пересечения перпендикуляров имеет координаты:
х=-3х - 8 (подставили (1) в (2)) => х = -2.
Тогда y = -2.
ответ: точка пересечения высот совпадает с вершиной В(-2;-2)
треугольника, то есть треугольник прямоугольный с <B=90°.
Для проверки найдем длины сторон треугольника:
АВ=√(((-2-(-4))²+(-2)²) = 2√2.
ВС=√(((2-(-2))²+(2-(-2))²) = 4√2.
АС=√(((2-(-4))²+2²) = 2√10.
АВ²+ВС² = 40; АС² = 40.
По Пифагору АВ²+ВС² = АС² - треугольник прямоугольный.
Объяснение:
cos(-x) = cosx sin(-x)= - sinx tg(-x) = - tgx ctg(-x) = - ctgx
Теперь, например, возьмем функцию y = 2* sin4x
f(x) = 2 * sin(4*(-x)) => f(x) = -2sin4x( т.е. функция поменяла свой знак, следовательно, она нечетная)
Но также бывают случаи, когда sinx оказывается четным.Например, y=2*sin^2(x). т.к. синус в квадрате, то, когда мы будем выносить минус из-под него, знак не поменяется, т.к. квадрат
С косинусом он всегда будет четным.
Бывают случаи, когда функция является ни нечетн. и ни четн.
Например:
y=sin(x)-x^2 вроде бы функция должна быть не четная, т.к. синус без квадрата, но
f(-x) = -sinx-x^2 т.е. функция никакая, т.к. синус поменял свой знак, а икс в квадрате нет.