В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ВККeerboom
ВККeerboom
06.01.2020 16:08 •  Алгебра

Стрела и сердечко расположены так,как показано на рисунке. за один ход стрела сдвигается на три сектора по часовой стрелке и одновременно сердечко на четыре сектора против часовой стрелки. через сколько ходов стрела и сердечко окажутся в каком-то одном секторе? ​

Показать ответ
Ответ:
Kimaru110
Kimaru110
17.04.2023 08:00

5.

y=-x^2-2x+3,

a=-1<0 - ветви параболы вниз;

x_0=-b/(2a)=-(-2)/(2*(-1))=-1,

y_0=-(-1)^2-2*(-1)+3=4,

(-1;4) - вершина параболы;

x=0, y=3,

(0;3) - пересечение с Оу,

y=0, -x^2-2x+3=0,

x^2+2x-3=0,

по теореме Виета x_1=-3, x_2=1,

(-3;0), (1;0) - пересечения с Оx;

1) E_y=(-∞;4);

2) x∈(-1;+∞);

 

6.

(х^2+2х+1)(х^2-6х-16)<0,

(х^2+2х+1)(х^2-6х-16)=0,

х^2+2х+1=0, (x+1)^2=0, x+1=0, x=-1;

х^2-6х-16=0, по теореме Виета x_1=-2, x_2=8; х^2-6х-16=(x+2)(x-8);

(x+1)^2(x+2)(x-8)<0,

(x+1)^2≥0, x∈R,

(x+2)(x-8)<0,

-2<x<8,

x∈(-2;8);

 

7.

x^2-6bx+3b=0,

D<0,

D/4=k^2-ac=(-3b)^2-3b=3b^2-3b=3b(b-1),

3b(b-1)<0,

3b(b-1)=0,

b_1=0, b_2=1,

0<b<1,

b∈(0;1);

 

8.

ΔABC, уг.C=90°, CE - высота, AE=16см, BE=9см;

AB=AE+BE (по свойству сложения отрезков),

AB=16+9=25см;

AC^2=AB*AE (катет есть среднее геометрическое гипотенузы и смежного сегмента),

AC^2=25*16=400, AC=20см,

BC^2=AB*BE=25*9=225, BC=15см,

P=AB+AC+BC=25+20+15=60см.


Решить ,буду рад решению любого .побудуйте графік функції y=3-2x-x2. використовуючи графік, знайдіть
0,0(0 оценок)
Ответ:
ПаучьяХватка
ПаучьяХватка
09.12.2021 08:30

ОДЗ:

\left \{ {{x^2+2x-20} \atop{ {x^2+2x-2\neq1 }\atop{\frac{|x+4|-|x|}{x-1}0 }} \right.

Решаем каждое неравенство:

x^2+2x-20    ⇒   (x+1)^2-3 0   ⇒(x+1-\sqrt{3})(x+1+\sqrt{3})0

x\in (-\infty;-1-\sqrt{3}) \cup{-1+\sqrt{3};+\infty)

x^2+2x-2\neq 1    ⇒     x^2+2x-3\neq 0  ⇒     x\neq -3;  x\neq 1

\frac{|x+4|-|x|}{x-1}0  

Подмодульные выражения обращаются в 0 в точках

x=-4    и  x=0

Это точки делят числовую прямую на три промежутка.

Раскрываем знак модуля на промежутках:

(-∞;-4]

|x+4|=-x-4

|x|=-x

\frac{-x-4-(-x)}{x-1}0     ⇒     \frac{-4}{x-1}0    ⇒    x < 1

решение неравенства (-∞;-4]

(-4;0]

|x+4|=x+4

|x|=-x

\frac{x+4-(-x)}{x-1}0     ⇒     \frac{2x+4}{x-1}0    ⇒    x < -2 или  x > 1

решение неравенства (-4;-2)

(0;+∞)

|x+4|=x+4

|x|=x

\frac{x+4-x}{x-1}0     ⇒     \frac{4}{x-1}0    ⇒    x > 1

решение неравенства (1;+∞]

Объединяем  ответы трех случаев:

\frac{|x+4|-|x|}{x-1}0    при   x \in (-\infty;-2)\cup(1;+\infty)

ОДЗ:

\left \{ {{x\in (-\infty;-1-\sqrt{3}) \cup{-1+\sqrt{3};+\infty)} \atop{ {x\neq-3; x\neq 1 }\atop{ x \in (-\infty;-2)\cup(1;+\infty)}} \right.

x\in (-\infty;-3)\cup(-3;1-\sqrt{3}) \cup(1;+\infty)

Решаем неравенство:  log_{x^2+2x-2}\frac{|x+4|-|x|}{x-1}0

0=log_{x^2+2x-1}1

log_{x^2+2x-2}\frac{|x+4|-|x|}{x-1}log_{x^2+2x-2}1

Два случая:

если основание логарифмической функции >1, то она возрастает и большему значению функции соответствует большее значение аргумента

\left \{ {{x^2+2x-21} \atop {\frac{|x+4|-|x|}{x-1}1}} \right.     ⇒     \left \{ {{x^2+2x-30} \atop {\frac{|x+4|-|x|-x+1}{x-1}0}} \right.     ⇒           \left \{ {{x\in (-\infty;-3) \cup(1;+\infty)} \atop {x\in(-\infty;-4]\cup(1;5)}} \right.

второе неравенство решаем на промежутках  так:

(-∞;-4]

\frac{-x-4-(-x)-x+1}{x-1}0    ⇒    \frac{-3-x}{x-1}0   ⇒    \frac{x+3}{x-1}  ⇒ (-3;-1)

не принадлежат (-∞;-4]

на (-4;0]

\frac{x+4-(-x)-x+1}{x-1}0      ⇒      \frac{x+5}{x-1}0    ⇒    x < -5   или  x > 1

не принадлежат (-4;0]

(0;+∞)

\frac{x+4-x-x+1}{x-1}0      ⇒    \frac{5-x}{x-1}0    ⇒   \frac{x-5}{x-1}    ⇒x\in (1;5)

о т в е т  этого случая (1;5)

если основание логарифмической функции 0 < a < 1, то она убывает и большему значению функции соответствует меньшее значение аргумента

\left \{ {{0     ⇒     \left \{ {0      ⇒   \left \{ {{x\in (-3;-1-\sqrt{3}) \cup(-1+\sqrt{3};1)} \atop {x\in(-\infty;-4]\cup(-4;0]\cup(5;+\infty)}} \right.

второе неравенство решаем на промежутках так:

(-∞;-4]

\frac{-x-4-(-x)-x+1}{x-1}    ⇒    \frac{-3-x}{x-1}   ⇒    \frac{x+3}{x-1}0  ⇒

(-∞;-3)U(1;+∞)

о т в е т. (-∞;-4]

на (-4;0]

\frac{x+4-(-x)-x+1}{x-1}      ⇒      \frac{x+5}{x-1}    ⇒     -5 < x < 1

о т в е т.  (-4;0]

(0;+∞)

\frac{x+4-x-x+1}{x-1}      ⇒    \frac{5-x}{x-1}    ⇒   \frac{x-5}{x-1}0    ⇒x\in (0;1)\cup(5;+\infty)

о т в е т  этого случая (-3;-1-\sqrt{3})

С учетом ОДЗ получаем окончательный ответ:(-3;-1-\sqrt{3})\cup(1;5)

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота