стрелок ведет стрельбу по цели, располагая 4 патронами. Стрельба прекращается при поражении цели или при исчерпании запаса патронов. Найти закон распределения числа израсходованных патронов, если вероятность поражения цели при каждом выстреле равна 0,6.
так наверно но не точно там
Объяснение:
Не будем доплачивать сотруднику с самой большой зарплатой до тех пор, пока его зарплата не сравняется с той, которая была самой маленькой (если сотрудников с наибольшей зарплатой несколько, то выберем любого из них). Таким образом, наименьшую зарплату будут иметь по крайней мере двое сотрудников. Затем, снова выберем сотрудника с самой большой зарплатой и не будем ему доплачивать, пока его зарплата не сравняется с той, которая была самой маленькой, и получим не менее трёх сотрудников с одинаковой зарплатой. Проделав такую операцию не более 9 раз, Ваня сможет уравнять все зарплаты.
Объяснение:
Монета брошена шесть раз.
В результате одного броска выпадет О или Р (Орел или Решка) с равной вероятностью 0,5.
Если записать результат 6 бросков, то получим цепочку, состоящую из 6 символов О или Р.
Например, исход - цепочка ООРОРО означает, что первый раз выпал Орел,
второй раз - Орел, третий раз - Решка и т.д..
Так как при каждом броске имеем 2 варианта (О или Р), а бросков 6,
то всего исходов (цепочек) имеем 26= 64. (В общем случае при n бросках имеем 2n исходов).
Пусть событие А = "Орел выпадет не менее трех раз" (3 или больше 3-х раз).
Противоположное событие (не А) = "Орел выпадет 1 раз, 2 раза или ни разу".
Подсчитаем количество исходов, при которых в цепочке
Орел будет встречаться 0, 1 или 2 раза.
- 1 исход (Орел не выпал ни разу)
Р, ОР, ООРООО, ОООРОО, РО, Р. 6 исходов (Орел выпал 1 раз).
С62 = 6!/(2!*4!) = 6*5/2=15 исходов, (Орел выпал 2 раза).
Всего благоприятных исходов (орел выпал более двух раз, т.е. не менее трех)
64 - (1+6+15) = 42.
Р = 42/64 = 0,65625